ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-car paint shop optimization with quantum annealing

133   0   0.0 ( 0 )
 نشر من قبل Sheir Yarkoni
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a generalization of the binary paint shop problem (BPSP) to tackle an automotive industry application, the multi-car paint shop (MCPS) problem. The objective of the optimization is to minimize the number of color switches between cars in a paint shop queue during manufacturing, a known NP-hard problem. We distinguish between different sub-classes of paint shop problems, and show how to formulate the basic MCPS problem as an Ising model. The problem instances used in this study are generated using real-world data from a factory in Wolfsburg, Germany. We compare the performance of the D-Wave 2000Q and Advantage quantum processors to other classical solvers and a hybrid quantum-classical algorithm offered by D-Wave Systems. We observe that the quantum processors are well-suited for smaller problems, and the hybrid algorithm for intermediate sizes. However, we find that the performance of these algorithms quickly approaches that of a simple greedy algorithm in the large size limit.



قيم البحث

اقرأ أيضاً

69 - Sergey Novikov 2018
In the quest to reboot computing, quantum annealing (QA) is an interesting candidate for a new capability. While it has not demonstrated an advantage over classical computing on a real-world application, many important regions of the QA design space have yet to be explored. In IARPAs Quantum Enhanced Optimization (QEO) program, we have opened some new lines of inquiry to get to the heart of QA, and are designing testbed superconducting circuits and conducting key experiments. In this paper, we discuss recent experimental progress related to one of the key design dimensions: qubit coherence. Using MIT Lincoln Laboratorys qubit fabrication process and extending recent progress in flux qubits, we are implementing and measuring QA-capable flux qubits. Achieving high coherence in a QA context presents significant new engineering challenges. We report on techniques and preliminary measurement results addressing two of the challenges: crosstalk calibration and qubit readout. This groundwork enables exploration of other promising features and provides a path to understanding the physics and the viability of quantum annealing as a computing resource.
Quantum annealing (QA) is a quantum computing algorithm that works on the principle of Adiabatic Quantum Computation (AQC), and it has shown significant computational advantages in solving combinatorial optimization problems such as vehicle routing p roblems (VRP) when compared to classical algorithms. This paper presents a QA approach for solving a variant VRP known as multi-depot capacitated vehicle routing problem (MDCVRP). This is an NP-hard optimization problem with real-world applications in the fields of transportation, logistics, and supply chain management. We consider heterogeneous depots and vehicles with different capacities. Given a set of heterogeneous depots, the number of vehicles in each depot, heterogeneous depot/vehicle capacities, and a set of spatially distributed customer locations, the MDCVRP attempts to identify routes of various vehicles satisfying the capacity constraints such as that all the customers are served. We model MDCVRP as a quadratic unconstrained binary optimization (QUBO) problem, which minimizes the overall distance traveled by all the vehicles across all depots given the capacity constraints. Furthermore, we formulate a QUBO model for dynamic version of MDCVRP known as D-MDCVRP, which involves dynamic rerouting of vehicles to real-time customer requests. We discuss the problem complexity and a solution approach to solving MDCVRP and D-MDCVRP on quantum annealing hardware from D-Wave.
Adiabatic quantum computing and optimization have garnered much attention recently as possible models for achieving a quantum advantage over classical approaches to optimization and other special purpose computations. Both techniques are probabilisti c in nature and the minimum gap between the ground state and first excited state of the system during evolution is a major factor in determining the success probability. In this work we investigate a strategy for increasing the minimum gap and success probability by introducing intermediate Hamiltonians that modify the evolution path between initial and final Hamiltonians. We focus on an optimization problem relevant to recent hardware implementations and present numerical evidence for the existence of a purely local intermediate Hamiltonian that achieve the optimum performance in terms of pushing the minimum gap to one of the end points of the evolution. As a part of this study we develop a convex optimization formulation of the search for optimal adiabatic schedules that makes this computation more tractable, and which may be of independent interest. We further study the effectiveness of random intermediate Hamiltonians on the minimum gap and success probability, and empirically find that random Hamiltonians have a significant probability of increasing the success probability, but only by a modest amount.
In order to treat all-to-all connected quadratic binary optimization problems (QUBO) with hardware quantum annealers, an embedding of the original problem is required due to the sparsity of the hardwares topology. Embedding fully-connected graphs -- typically found in industrial applications -- incurs a quadratic space overhead and thus a significant overhead in the time to solution. Here we investigate this embedding penalty of established planar embedding schemes such as minor embedding on a square lattice, minor embedding on a Chimera graph, and the Lechner-Hauke-Zoller scheme using simulated quantum annealing on classical hardware. Large-scale quantum Monte Carlo simulation suggest a polynomial time-to-solution overhead. Our results demonstrate that standard analog quantum annealing hardware is at a disadvantage in comparison to classical digital annealers, as well as gate-model quantum annealers and could also serve as benchmark for improvements of the standard quantum annealing protocol.
273 - Gushu Li , Yunong Shi , 2021
Computational chemistry is the leading application to demonstrate the advantage of quantum computing in the near term. However, large-scale simulation of chemical systems on quantum computers is currently hindered due to a mismatch between the comput ational resource needs of the program and those available in todays technology. In this paper we argue that significant new optimizations can be discovered by co-designing the application, compiler, and hardware. We show that multiple optimization objectives can be coordinated through the key abstraction layer of Pauli strings, which are the basic building blocks of computational chemistry programs. In particular, we leverage Pauli strings to identify critical program components that can be used to compress program size with minimal loss of accuracy. We also leverage the structure of Pauli string simulation circuits to tailor a novel hardware architecture and compiler, leading to significant execution overhead reduction by up to 99%. While exploiting the high-level domain knowledge reveals significant optimization opportunities, our hardware/software framework is not tied to a particular program instance and can accommodate the full family of computational chemistry problems with such structure. We believe the co-design lessons of this study can be extended to other domains and hardware technologies to hasten the onset of quantum advantage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا