ترغب بنشر مسار تعليمي؟ اضغط هنا

OpenFed: An Open-Source Security and Privacy Guaranteed Federated Learning Framework

132   0   0.0 ( 0 )
 نشر من قبل Dengsheng Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Chen Dengsheng




اسأل ChatGPT حول البحث

The broad application of artificial intelligence techniques ranging from self-driving vehicles to advanced medical diagnostics afford many benefits. Federated learning is a new breed of artificial intelligence, offering techniques to help bridge the gap between personal data protection and utilization for research and commercial deployment, especially in the use-cases where security and privacy are the key concerns. Here, we present OpenFed, an open-source software framework to simultaneously address the demands for data protection and utilization. In practice, OpenFed enables state-of-the-art model development in low-trust environments despite limited local data availability, which lays the groundwork for sustainable collaborative model development and commercial deployment by alleviating concerns of asset protection. In addition, OpenFed also provides an end-to-end toolkit to facilitate federated learning algorithm development as well as several benchmarks to fair performance comparison under diverse computing paradigms and configurations.



قيم البحث

اقرأ أيضاً

Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) projects without sharing sensitive data, such as, patient records, financial data, or classified secrets. Open Federated Learning ( OpenFL https://github.com/intel/openfl) is an open-source framework for training ML algorithms using the data-private collaborative learning paradigm of FL. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and deep learning frameworks. Here, we summarize the motivation and development characteristics of OpenFL, with the intention of facilitating its application to existing ML model training in a production environment. Finally, we describe the first use of the OpenFL framework to train consensus ML models in a consortium of international healthcare organizations, as well as how it facilitates the first computational competition on FL.
Federated learning has emerged as a promising approach for collaborative and privacy-preserving learning. Participants in a federated learning process cooperatively train a model by exchanging model parameters instead of the actual training data, whi ch they might want to keep private. However, parameter interaction and the resulting model still might disclose information about the training data used. To address these privacy concerns, several approaches have been proposed based on differential privacy and secure multiparty computation (SMC), among others. They often result in large communication overhead and slow training time. In this paper, we propose HybridAlpha, an approach for privacy-preserving federated learning employing an SMC protocol based on functional encryption. This protocol is simple, efficient and resilient to participants dropping out. We evaluate our approach regarding the training time and data volume exchanged using a federated learning process to train a CNN on the MNIST data set. Evaluation against existing crypto-based SMC solutions shows that HybridAlpha can reduce the training time by 68% and data transfer volume by 92% on average while providing the same model performance and privacy guarantees as the existing solutions.
In this paper, we address the problem of privacy-preserving training and evaluation of neural networks in an $N$-party, federated learning setting. We propose a novel system, POSEIDON, the first of its kind in the regime of privacy-preserving neural network training. It employs multiparty lattice-based cryptography to preserve the confidentiality of the training data, the model, and the evaluation data, under a passive-adversary model and collusions between up to $N-1$ parties. To efficiently execute the secure backpropagation algorithm for training neural networks, we provide a generic packing approach that enables Single Instruction, Multiple Data (SIMD) operations on encrypted data. We also introduce arbitrary linear transformations within the cryptographic bootstrapping operation, optimizing the costly cryptographic computations over the parties, and we define a constrained optimization problem for choosing the cryptographic parameters. Our experimental results show that POSEIDON achieves accuracy similar to centralized or decentralized non-private approaches and that its computation and communication overhead scales linearly with the number of parties. POSEIDON trains a 3-layer neural network on the MNIST dataset with 784 features and 60K samples distributed among 10 parties in less than 2 hours.
Federated learning (FL) allows a server to learn a machine learning (ML) model across multiple decentralized clients that privately store their own training data. In contrast with centralized ML approaches, FL saves computation to the server and does not require the clients to outsource their private data to the server. However, FL is not free of issues. On the one hand, the model updates sent by the clients at each training epoch might leak information on the clients private data. On the other hand, the model learnt by the server may be subjected to attacks by malicious clients; these security attacks might poison the model or prevent it from converging. In this paper, we first examine security and privacy attacks to FL and critically survey solutions proposed in the literature to mitigate each attack. Afterwards, we discuss the difficulty of simultaneously achieving security and privacy protection. Finally, we sketch ways to tackle this open problem and attain both security and privacy.
Security and privacy of the users have become significant concerns due to the involvement of the Internet of things (IoT) devices in numerous applications. Cyber threats are growing at an explosive pace making the existing security and privacy measur es inadequate. Hence, everyone on the Internet is a product for hackers. Consequently, Machine Learning (ML) algorithms are used to produce accurate outputs from large complex databases, where the generated outputs can be used to predict and detect vulnerabilities in IoT-based systems. Furthermore, Blockchain (BC) techniques are becoming popular in modern IoT applications to solve security and privacy issues. Several studies have been conducted on either ML algorithms or BC techniques. However, these studies target either security or privacy issues using ML algorithms or BC techniques, thus posing a need for a combined survey on efforts made in recent years addressing both security and privacy issues using ML algorithms and BC techniques. In this paper, we provide a summary of research efforts made in the past few years, starting from 2008 to 2019, addressing security and privacy issues using ML algorithms and BCtechniques in the IoT domain. First, we discuss and categorize various security and privacy threats reported in the past twelve years in the IoT domain. Then, we classify the literature on security and privacy efforts based on ML algorithms and BC techniques in the IoT domain. Finally, we identify and illuminate several challenges and future research directions in using ML algorithms and BC techniques to address security and privacy issues in the IoT domain.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا