ﻻ يوجد ملخص باللغة العربية
We propose and study a new multilevel method for the numerical approximation of a Gibbs distribution $pi$ on R d , based on (over-damped) Langevin diffusions. This method both inspired by [PP18] and [GMS + 20] relies on a multilevel occupation measure, i.e. on an appropriate combination of R occupation measures of (constant-step) discretized schemes of the Langevin diffusion with respective steps $gamma$r = $gamma$02 --r , r = 0,. .. , R. For a given diffusion, we first state a result under general assumptions which guarantees an $epsilon$-approximation (in a L 2-sense) with a cost proportional to $epsilon$ --2 (i.e. proportional to a Monte-Carlo method without bias) or $epsilon$ --2 | log $epsilon$| 3 under less contractive assumptions. This general result is then applied to over-damped Langevin diffusions in a strongly convex setting, with a study of the dependence in the dimension d and in the spectrum of the Hessian matrix D 2 U of the potential U : R d $rightarrow$ R involved in the Gibbs distribution. This leads to strategies with cost in O(d$epsilon$ --2 log 3 (d$epsilon$ --2)) and in O(d$epsilon$ --2) under an additional condition on the third derivatives of U. In particular, in our last main result, we show that, up to universal constants, an appropriate choice of the diffusion coefficient and of the parameters of the procedure leads to a cost controlled by ($lambda$ U $lor$1) 2 $lambda$ 3 U d$epsilon$ --2 (where$lambda$U and $lambda$ U respectively denote the supremum and the infimum of the largest and lowest eigenvalue of D 2 U). In our numerical illustrations, we show that our theoretical bounds are confirmed in practice and finally propose an opening to some theoretical or numerical strategies in order to increase the robustness of the procedure when the largest and smallest eigenvalues of D 2 U are respectively too large or too small.
In this paper, we present a generic methodology for the efficient numerical approximation of the density function of the McKean-Vlasov SDEs. The weak error analysis for the projected process motivates us to combine the iterative Multilevel Monte Carl
This work introduces and studies a new family of velocity jump Markov processes directly amenable to exact simulation with the following two properties: i) trajectories converge in law when a time-step parameter vanishes towards a given Langevin or H
In this work, we study the numerical approximation of a class of singular fully coupled forward backward stochastic differential equations. These equations have a degenerate forward component and non-smooth terminal condition. They are used, for exam
We establish a general theory of optimal strong error estimation for numerical approximations of a second-order parabolic stochastic partial differential equation with monotone drift driven by a multiplicative infinite-dimensional Wiener process. The
Solutions to the stochastic wave equation on the unit sphere are approximated by spectral methods. Strong, weak, and almost sure convergence rates for the proposed numerical schemes are provided and shown to depend only on the smoothness of the drivi