ﻻ يوجد ملخص باللغة العربية
A set of vertices $Xsubseteq V$ in a simple graph $G(V,E)$ is irredundant if each vertex $xin X$ is either isolated in the induced subgraph $langle Xrangle$ or else has a private neighbor $yin Vsetminus X$ that is adjacent to $x$ and to no other vertex of $X$. The emph{irredundant Ramsey number} $s(m,n)$ is the smallest $N$ such that in every red-blue coloring of the edges of the complete graph of order $N$, either the blue subgraph contains an $m$-element irredundant set or the red subgraph contains an $n$-element irredundant set. The emph{mixed Ramsey number} $t(m,n)$ is the smallest $N$ for which every red-blue coloring of the edges of $K_N$ yields an $m$-element irredundant set in the blue subgraph or an $n$-element independent set in the red subgraph. In this paper, we first improve the upper bound of $t(3,n)$; using this result, we confirm that a conjecture proposed by Chen, Hattingh, and Rousseau, that is, $lim_{nrightarrow infty}frac{t(m,n)}{r(m,n)}=0$ for each fixed $mgeq 3$, is true for $mleq 4$. At last, we prove that $s(3,9)$ and $t(3,9)$ are both equal to $26$.
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,
Finding exact Ramsey numbers is a problem typically restricted to relatively small graphs. The flag algebra method was developed to find asymptotic results for very large graphs, so it seems that the method is not suitable for finding small Ramsey nu
For $ngeq s> rgeq 1$ and $kgeq 2$, write $n rightarrow (s)_{k}^r$ if every hyperedge colouring with $k$ colours of the complete $r$-uniform hypergraph on $n$ vertices has a monochromatic subset of size $s$. Improving upon previous results by textcite
Extending the concept of Ramsey numbers, Erd{H o}s and Rogers introduced the following function. For given integers $2le s<t$ let $$ f_{s,t}(n)=min {max {|W| : Wsubseteq V(G) {and} G[W] {contains no} K_s} }, $$ where the minimum is taken over all $K_
We prove that the number of integers in the interval [0,x] that are non-trivial Ramsey numbers r(k,n) (3 <= k <= n) has order of magnitude (x ln x)**(1/2).