ﻻ يوجد ملخص باللغة العربية
We prove that a continuous potential $q$ can be constructively determined from the knowledge of the Dirichlet-to-Neumann map for the perturbed biharmonic operator $Delta_g^2+q$ on a conformally transversally anisotropic Riemannian manifold of dimension $ge 3$ with boundary, assuming that the geodesic ray transform on the transversal manifold is constructively invertible. This is a constructive counterpart of the uniqueness result of [51]. In particular, our result is applicable and new in the case of smooth bounded domains in the $3$-dimensional Euclidean space as well as in the case of $3$-dimensional admissible manifolds.
We show that a continuous potential $q$ can be constructively determined from the knowledge of the Dirichlet-to-Neumann map for the Schrodinger operator $-Delta_g+q$ on a conformally transversally anisotropic manifold of dimension $geq 3$, provided t
We show that a transversely geometrically controlling boundary damping strip is sufficient but not necessary for $t^{-1/2}$-decay of waves on product manifolds. We give a general scheme to turn resolvent estimates for impedance problems on cross-sections to wave decay on product manifolds.
We consider a variant of Gamows liquid drop model with an anisotropic surface energy. Under suitable regularity and ellipticity assumptions on the surface tension, Wulff shapes are minimizers in this problem if and only if the surface energy is isotr
We study the inverse scattering problem of determining a magnetic field and electric potential from scattering measurements corresponding to finitely many plane waves. The main result shows that the coefficients are uniquely determined by $2n$ measur
We consider manifolds with conic singularites that are isometric to $mathbb{R}^{n}$ outside a compact set. Under natural geometric assumptions on the cone points, we prove the existence of a logarithmic resonance-free region for the cut-off resolvent