ﻻ يوجد ملخص باللغة العربية
We extend previous work on gamma-ray burst (GRB) afterglows involving hot thermal electrons at the base of a shock-accelerated tail. Using a physically-motivated electron distribution based on first-principles simulations, we compute broadband emission from radio to TeV gamma-rays. For the first time, we present the effects of a thermal distribution of electrons on synchrotron self-Compton (SSC) emission. The presence of thermal electrons causes temporal and spectral structure across the entire observable afterglow, which is substantively different from models that assume a pure power-law distribution for the electrons. We show that early-time TeV emission is enhanced by more than an order of magnitude for our fiducial parameters, with a time-varying spectral index that does not occur for a pure power law of electrons. We further show that the X-ray closure relations take a very different, also time-dependent, form when thermal electrons are present; the shape traced out by the X-ray afterglows is a qualitative match to observations of the traditional decay phase.
Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent.
There are still some important unanswered questions about the detailed particle acceleration and escape occurring during the quiescent epoches. As a result, the particle distribution that is adopted in the blazar quiescent spectral model have numerou
GRB 190114C, a long and luminous burst, was detected by several satellites and ground-based telescopes from radio wavelengths to GeV gamma-rays. In the GeV gamma-rays, the Fermi LAT detected 48 photons above 1 GeV during the first hundred seconds aft
We present multi-wavelength observations of a typical long duration GRB 120326A at $z=1.798$, including rapid observations using a submillimeter array (SMA), and a comprehensive monitoring in X-ray and optical. The SMA observation provided the fastes
We present a model of the spectra of gamma-ray emitting blazars in which a single homogeneous emission region both emits synchrotron photons directly and scatters them to high (gamma-ray) energy before emission (a ``synchrotron self-Compton or SSC mo