ترغب بنشر مسار تعليمي؟ اضغط هنا

Recurrence relations for off-shell Bethe vectors in trigonometric integrable models

245   0   0.0 ( 0 )
 نشر من قبل Andrii Liashyk
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The zero modes method is applied in order to get action of the monodromy matrix entries onto off-shell Bethe vectors in quantum integrable models associated with $U_q(mathfrak{gl}_N)$-invariant $R$-matrices. The action formulas allow to get recurrence relations for off-shell Bethe vectors and for highest coefficients of the Bethe vectors scalar product.



قيم البحث

اقرأ أيضاً

Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, a systematic method for retrieving the Bethe-type eigenstates of integrable models without obvious reference state is developed by employing certain orthogonal bas is of the Hilbert space. With the XXZ spin torus model and the open XXX spin-1/2 chain as examples, we show that for a given inhomogeneous T-Q relation and the associated Bethe Ansatz equations, the constructed Bethe-type eigenstate has a well-defined homogeneous limit.
We consider the overlap of Bethe vectors of the XXX spin chain with a diagonal twist and the modified Bethe vectors with a general twist. We find a determinant representation for this overlap under one additional condition on the twist parameters. Su ch objects arise in the calculations of nonequilibrium physics.
We provide a list of explicit eigenfunctions of the trigonometric Calogero-Sutherland Hamiltonian associated to the root system of the exceptional Lie algebra E8. The quantum numbers of these solutions correspond to the first and second order weights of the Lie algebra.
It is shown that planar quantum dynamics can be related to 3-body quantum dynamics in the space of relative motion with a special class of potentials. As an important special case the $O(d)$ symmetry reduction from $d$ degrees of freedom to one degre e is presented. A link between two-dimensional (super-integrable) systems and 3-body (super-integrable) systems is revealed. As illustration we present number of examples. We demonstrate that the celebrated Calogero-Wolfes 3-body potential has a unique property: two-dimensional quantum dynamics coincides with 3-body quantum dynamics on the line at $d=1$; it is governed by the Tremblay-Turbiner-Winternitz potential for parameter $k=3$.
323 - V. Prokofev , A. Zabrodin 2019
We consider solutions of the matrix KP hierarchy that are trigonometric functions of the first hierarchical time $t_1=x$ and establish the correspondence with the spin generalization of the trigonometric Calogero-Moser system on the level of hierarch ies. Namely, the evolution of poles $x_i$ and matrix residues at the poles $a_i^{alpha}b_i^{beta}$ of the solutions with respect to the $k$-th hierarchical time of the matrix KP hierarchy is shown to be given by the Hamiltonian flow with the Hamiltonian which is a linear combination of the first $k$ higher Hamiltonians of the spin trigonometric Calogero-Moser system with coordinates $x_i$ and with spin degrees of freedom $a_i^{alpha}, , b_i^{beta}$. By considering evolution of poles according to the discrete time matrix KP hierarchy we also introduce the integrable discrete time version of the trigonometric spin Calogero-Moser system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا