ﻻ يوجد ملخص باللغة العربية
We study conditions for the emergence of the preformed Cooper pairs in materials hosting flat bands. As a particular example, we consider time-reversal symmetric pseudospin-1 semimetal, with a pair of three-band crossing points at which a flat band intersects with a Dirac cone, and focus on the s-wave inter-node pairing channel. The nearly dispersionless nature of the flat band promotes local Cooper pair formation so that the system can be considered as an array of superconducting grains. Due to dispersive bands, Andreev scattering between the grains gives rise to the global phase-coherent superconductivity at low temperatures. We develop a theory to calculate transition temperature between the preformed Cooper pair state and the phase-coherent state for different interaction strengths in the Cooper channel.
In most superconductors the transition to the superconducting state is driven by the binding of electrons into Cooper-pairs. The condensation of these pairs into a single, phase coherent, quantum state takes place concomitantly with their formation a
Superconductivity arises from two distinct quantum phenomena: electron pairing and long-range phase coherence. In conventional superconductors, the two quantum phenomena generally take place simultaneously, while the electron pairing occurs at higher
Angle-resolved photoemission on underdoped La$_{1.895}$Sr$_{0.105}$CuO$_4$ reveals that in the pseudogap phase, the dispersion has two branches located above and below the Fermi level with a minimum at the Fermi momentum. This is characteristic of th
In a flat Bloch band the kinetic energy is quenched and single particles cannot propagate since they are localized due to destructive interference. Whether this remains true in the presence of interactions is a challenging question because a flat dis
The temperature evolution of the proximity effect in Au/La$_{2-x}$Sr$_x$CuO$_4$ and La$_{1.55}$Sr$_{0.45}$CuO$_4$/La$_{2-x}$Sr$_x$CuO$_4$ bilayers was investigated using scanning tunneling microscopy. Proximity induced gaps, centered at the chemical