Stability and dynamics across magnetic phases of nonlinear excitations in two-dimensional spinor Bose-Einstein condensates


الملخص بالإنكليزية

The static properties, i.e., existence and stability, as well as the quench-induced dynamics of nonlinear excitations of the vortex-bright type appearing in two-dimensional harmonically confined spin-1 Bose-Einstein condensates are investigated. Linearly stable vortex-bright-vortex and bright-vortex-bright solutions arise in both antiferromagnetic and ferromagnetic spinor gases upon quadratic Zeeman energy shift variations. The precessional motion of such coherent structures is subsequently monitored dynamically. Deformations of the above configurations across the relevant transitions are exposed and discussed in detail. It is further found that stationary states involving highly quantized vortices can be realized in both settings. Spatial elongations, precessional motion and spiraling of the nonlinear excitations when exposed to finite temperatures and upon crossing the distinct phase boundaries, via quenching of the quadratic Zeeman coefficient, are unveiled. Spin-mixing processes triggered by the quench lead, among others, to changes in the waveform of the ensuing configurations. Our findings reveal an interplay between pattern formation and spin-mixing processes being accessible in contemporary cold atom experiments.

تحميل البحث