ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed flexibility as a cost-effective alternative to grid reinforcement

222   0   0.0 ( 0 )
 نشر من قبل Jordan Holweger
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The deployment of distributed photovoltaics (PV) in low-voltage networks may cause technical issues such as voltage rises, line ampacity violations, and transformer overloading for distribution system operators (DSOs). These problems may induce high grid reinforcement costs. In this work, we assume the DSO can control each prosumers battery and PV system. Under such assumptions, we evaluate the cost of providing flexibility and compare it with grid reinforcement costs. Our results highlight that using distributed flexibility is more profitable than reinforcing a low-voltage network until the PV generation covers 145% of the network annual energy demand.



قيم البحث

اقرأ أيضاً

Demand flexibility is increasingly important for power grids, in light of growing penetration of renewable generation. Careful coordination of thermostatically controlled loads (TCLs) can potentially modulate energy demand, decrease operating costs, and increase grid resiliency. However, it is challenging to control a heterogeneous population of TCLs: the control problem has a large state action space; each TCL has unique and complex dynamics; and multiple system-level objectives need to be optimized simultaneously. To address these challenges, we propose a distributed control solution, which consists of a central load aggregator that optimizes system-level objectives and building-level controllers that track the load profiles planned by the aggregator. To optimize our agents policies, we draw inspirations from both reinforcement learning (RL) and model predictive control. Specifically, the aggregator is updated with an evolutionary strategy, which was recently demonstrated to be a competitive and scalable alternative to more sophisticated RL algorithms and enables policy updates independent of the building-level controllers. We evaluate our proposed approach across four climate zones in four nine-building clusters, using the newly-introduced CityLearn simulation environment. Our approach achieved an average reduction of 16.8% in the environment cost compared to the benchmark rule-based controller.
This paper proposes a distributed framework for vehicle grid integration (VGI) taking into account the communication and physical networks. To this end, we model the electric vehicle (EV) behaviour that includes time of departure, time of arrival, st ate of charge, required energy, and its objectives, e.g., avoid battery degradation. Next, we formulate the centralised day ahead distribution market (DADM) which explicitly represents the physical system, supports unbalanced three phase networks with delta and wye connections, and incorporates the charging needs of EVs. The solution of the centralised market requires knowledge of EV information in terms of desired energy, departure and arrival times that EV owners are reluctant in providing. Moreover, the computational effort required to solve the DADM in cases of numerous EVs is very intensive. As such, we propose a distributed solution of the DADM clearing mechanism over a time-varying communication network. We illustrate the proposed VGI framework through the 13-bus, 33- bus, and 141-bus distribution feeders.
Electric vehicles (EVs) are an eco-friendly alternative to vehicles with internal combustion engines. Despite their environmental benefits, the massive electricity demand imposed by the anticipated proliferation of EVs could jeopardize the secure and economic operation of the power grid. Hence, proper strategies for charging coordination will be indispensable to the future power grid. Coordinated EV charging schemes can be implemented as centralized, decentralized, and hierarchical systems, with the last two, referred to as distributed charging control systems. This paper reviews the recent literature of distributed charging control schemes, where the computations are distributed across multiple EVs and/or aggregators. First, we categorize optimization problems for EV charging in terms of operational aspects and cost aspects. Then under each category, we provide a comprehensive discussion on algorithms for distributed EV charge scheduling, considering the perspectives of the grid operator, the aggregator, and the EV user. We also discuss how certain algorithms proposed in the literature cope with various uncertainties inherent to distributed EV charging control problems. Finally, we outline several research directions that require further attention.
The Pacific Northwest Smart Grid Demonstration was an electricity grid modernization project conducted in the Northwest U.S. This paper presents the analysis of renewable generation at the Renewable Energy Park located in the City of Ellensburg, WA. The community energy park concept is an intriguing model for community investment in renewable resources,but the lessons in this paper should be considered.
Emergency control, typically such as under-voltage load shedding (UVLS), is broadly used to grapple with low voltage and voltage instability issues in practical power systems under contingencies. However, existing emergency control schemes are rule-b ased and cannot be adaptively applied to uncertain and floating operating conditions. This paper proposes an adaptive UVLS algorithm for emergency control via deep reinforcement learning (DRL) and expert systems. We first construct dynamic components for picturing the power system operation as the environment. The transient voltage recovery criteria, which poses time-varying requirements to UVLS, is integrated into the states and reward function to advise the learning of deep neural networks. The proposed approach has no tuning issue of coefficients in reward functions, and this issue was regarded as a deficiency in the existing DRL-based algorithms. Extensive case studies illustrate that the proposed method outperforms the traditional UVLS relay in both the timeliness and efficacy for emergency control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا