ﻻ يوجد ملخص باللغة العربية
The recently proposed phase-matching quantum key distribution offers means to overcome the linear key rate-transmittance bound. Since the key information is encoded onto the phases of coherent states, the misalignment between the two remote reference frames would yield errors and significantly degrade the key generation rate from the ideal case. In this work, we propose a reference-frame-independent design of phase-matching quantum key distribution by introducing high-dimensional key encoding space. With encoded phases spanning the unit circle, the error statistics at arbitrary fixed phase reference difference can be recovered and treated separately, from which the misalignment angle can be identified. By naturally extending the binary encoding symmetry and complementarity to high dimensions, we present a security proof of this high-dimensional phase-matching quantum key distribution and demonstrate with simulation that a 17-dimensional protocol is completely immune to any degree of fixed misalignment and robust to slow phase fluctuations. We expect the high-dimensional protocol to be a practical reference-frame-independent design for general phase-encoding schemes where high-dimensional encoding is relatively easy to implement.
Reference-frame-independent quantum key distribution (RFI QKD) protocol can reduce the requirement on the alignment of reference frames in practical systems. However, comparing with the Bennett-Brassard (BB84) QKD protocol, the main drawback of RFI Q
Quantum key distribution (QKD) is moving from research laboratories towards applications. As computing becomes more mobile, cashless as well as cardless payment solutions are introduced, and a need arises for incorporating QKD in a mobile device. Han
Rapidly and randomly drifted reference frames will shorten the link distance and decrease the secure key rate of realistic quantum key distribution (QKD) systems. However, an actively or inappropriately implemented calibration scheme will increase co
Measurement-device-independent quantum key distribution (MDI-QKD) is proved to be able to eliminate all potential detector side channel attacks. Combining with the reference frame independent (RFI) scheme, the complexity of practical system can be re
Reference-frame-independent measurement-device-independent quantum key distribution (RFI-MDI-QKD) is a novel protocol which eliminates all possible attacks on detector side and necessity of reference-frame alignment in source sides. However, its perf