ﻻ يوجد ملخص باللغة العربية
The textual content of a document and its publication date are intertwined. For example, the publication of a news article on a topic is influenced by previous publications on similar issues, according to underlying temporal dynamics. However, it can be challenging to retrieve meaningful information when textual information conveys little information or when temporal dynamics are hard to unveil. Furthermore, the textual content of a document is not always linked to its temporal dynamics. We develop a flexible method to create clusters of textual documents according to both their content and publication time, the Powered Dirichlet-Hawkes process (PDHP). We show PDHP yields significantly better results than state-of-the-art models when temporal information or textual content is weakly informative. The PDHP also alleviates the hypothesis that textual content and temporal dynamics are always perfectly correlated. PDHP allows retrieving textual clusters, temporal clusters, or a mixture of both with high accuracy when they are not. We demonstrate that PDHP generalizes previous work --such as the Dirichlet-Hawkes process (DHP) and Uniform process (UP). Finally, we illustrate the changes induced by PDHP over DHP and UP in a real-world application using Reddit data.
The darknet markets are notorious black markets in cyberspace, which involve selling or brokering drugs, weapons, stolen credit cards, and other illicit goods. To combat illicit transactions in the cyberspace, it is important to analyze the behaviors
In this article, we consider a non-parametric Bayesian approach to multivariate quantile regression. The collection of related conditional distributions of a response vector Y given a univariate covariate X is modeled using a Dependent Dirichlet Proc
We propose Dirichlet Process Mixture (DPM) models for prediction and cluster-wise variable selection, based on two choices of shrinkage baseline prior distributions for the linear regression coefficients, namely the Horseshoe prior and Normal-Gamma p
The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maxi
The prevalence of location-based social networks (LBSNs) has eased the understanding of human mobility patterns. Knowledge of human dynamics can aid in various ways like urban planning, managing traffic congestion, personalized recommendation etc. Th