ﻻ يوجد ملخص باللغة العربية
Let $G$ be a countable group and $X$ be a totally regular curve. Suppose that $phi:Grightarrow {rm Homeo}(X)$ is a minimal action. Then we show an alternative: either the action is topologically conjugate to isometries on the circle $mathbb S^1$ (this implies that $phi(G)$ contains an abelian subgroup of index at most 2), or has a quasi-Schottky subgroup (this implies that $G$ contains the free nonabelian group $mathbb Z*mathbb Z$). In order to prove the alternative, we get a new characterization of totally regular curves by means of the notion of measure; and prove an escaping lemma holding for any minimal group action on infinite compact metric spaces, which improves a trick in Margulis proof of the alternative in the case that $X=mathbb S^1$.
Let $X$ be a regular curve and $n$ be a positive integer such that for every nonempty open set $Usubset X$, there is a nonempty connected open set $Vsubset U$ with the cardinality $|partial_X(V)|leq n$. We show that if $X$ admits a sensitive action o
We show that group actions on many treelike compact spaces are not too complicated dynamically. We first observe that an old argument of Seidler implies that every action of a topological group $G$ on a regular continuum is null and therefore also ta
In this short note, for countably infinite amenable group actions, we provide topological proofs for the following results: Bowen topological entropy (dimensional entropy) of the whole space equals the usual topological entropy along tempered F{o}lne
In this paper, we study discrete spectrum of invariant measures for countable discrete amenable group actions. We show that an invariant measure has discrete spectrum if and only if it has bounded measure complexity. We also prove that, discrete sp
We prove that for any two continuous minimal (topologically free) actions of the infinite dihedral group on an infinite compact Hausdorff space, they are continuously orbit equivalent only if they are conjugate. We also show the above fails if we rep