ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Control of Velocity and Nonlocal Interactions in the Mean-Field Kuramoto Model

65   0   0.0 ( 0 )
 نشر من قبل Carlo Sinigaglia
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate how the self-synchronization property of a swarm of Kuramoto oscillators can be controlled and exploited to achieve target densities and target phase coherence. In the limit of an infinite number of oscillators, the collective dynamics of the agents density is described by a mean-field model in the form of a nonlocal PDE, where the nonlocality arises from the synchronization mechanism. In this mean-field setting, we introduce two space-time dependent control inputs to affect the density of the oscillators: an angular velocity field that corresponds to a state feedback law for individual agents, and a control parameter that modulates the strength of agent interactions over space and time, i.e., a multiplicative control with respect to the integral nonlocal term. We frame the density tracking problem as a PDE-constrained optimization problem. The controlled synchronization and phase-locking are measured with classical polar order metrics. After establishing the mass conservation property of the mean-field model and bounds on its nonlocal term, a system of first-order necessary conditions for optimality is recovered using a Lagrangian method. The optimality system, comprising a nonlocal PDE for the state dynamics equation, the respective nonlocal adjoint dynamics, and the Euler equation, is solved iteratively following a standard Optimize-then-Discretize approach and an efficient numerical solver based on spectral methods. We demonstrate our approach for each of the two control inputs in simulation.



قيم البحث

اقرأ أيضاً

In this article, we propose a new unifying framework for the investigation of multi-agent control problems in the mean-field setting. Our approach is based on a new definition of differential inclusions for continuity equations formulated in the Wass erstein spaces of optimal transport. The latter allows to extend several known results of the classical theory of differential inclusions, and to prove an exact correspondence between solutions of differential inclusions and control systems. We show its appropriateness on an example of leader-follower evacuation problem.
In this article, we investigate some of the fine properties of the value function associated to an optimal control problem in the Wasserstein space of probability measures. Building on new interpolation and linearisation formulas for non-local flows, we prove semiconcavity estimates for the value function, and establish several variants of the so-called sensitivity relations which provide connections between its superdifferential and the adjoint curves stemming from the maximum principle. We subsequently make use of these results to study the propagation of regularity for the value function along optimal trajectories, as well as to investigate sufficient optimality conditions and optimal feedbacks for mean-field optimal control problems.
A mean-field selective optimal control problem of multipopulation dynamics via transient leadership is considered. The agents in the system are described by their spatial position and their probability of belonging to a certain population. The dynami cs in the control problem is characterized by the presence of an activation function which tunes the control on each agent according to the membership to a population, which, in turn, evolves according to a Markov-type jump process. This way, a hypothetical policy maker can select a restricted pool of agents to act upon based, for instance, on their time-dependent influence on the rest of the population. A finite-particle control problem is studied and its mean-field limit is identified via $Gamma$-convergence, ensuring convergence of optimal controls. The dynamics of the mean-field optimal control is governed by a continuity-type equation without diffusion. Specific applications in the context of opinion dynamics are discussed with some numerical experiments.
We propose a mean-field optimal control problem for the parameter identification of a given pattern. The cost functional is based on the Wasserstein distance between the probability measures of the modeled and the desired patterns. The first-order op timality conditions corresponding to the optimal control problem are derived using a Lagrangian approach on the mean-field level. Based on these conditions we propose a gradient descent method to identify relevant parameters such as angle of rotation and force scaling which may be spatially inhomogeneous. We discretize the first-order optimality conditions in order to employ the algorithm on the particle level. Moreover, we prove a rate for the convergence of the controls as the number of particles used for the discretization tends to infinity. Numerical results for the spatially homogeneous case demonstrate the feasibility of the approach.
We study a multiscale approach for the control of agent-based, two-population models. The control variable acts over one population of leaders, which influence the population of followers via the coupling generated by their interaction. We cast a qua dratic optimal control problem for the large-scale microscale model, which is approximated via a Boltzmann approach. By sampling solutions of the optimal control problem associated to binary two-population dynamics, we generate sub-optimal control laws for the kinetic limit of the multi-population model. We present numerical experiments related to opinion dynamics assessing the performance of the proposed control design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا