ﻻ يوجد ملخص باللغة العربية
Image-based virtual try-on involves synthesizing perceptually convincing images of a model wearing a particular garment and has garnered significant research interest due to its immense practical applicability. Recent methods involve a two stage process: i) warping of the garment to align with the model ii) texture fusion of the warped garment and target model to generate the try-on output. Issues arise due to the non-rigid nature of garments and the lack of geometric information about the model or the garment. It often results in improper rendering of granular details. We propose ZFlow, an end-to-end framework, which seeks to alleviate these concerns regarding geometric and textural integrity (such as pose, depth-ordering, skin and neckline reproduction) through a combination of gated aggregation of hierarchical flow estimates termed Gated Appearance Flow, and dense structural priors at various stage of the network. ZFlow achieves state-of-the-art results as observed qualitatively, and on quantitative benchmarks of image quality (PSNR, SSIM, and FID). The paper presents extensive comparisons with other existing solutions including a detailed user study and ablation studies to gauge the effect of each of our contributions on multiple datasets.
Image virtual try-on aims to fit a garment image (target clothes) to a person image. Prior methods are heavily based on human parsing. However, slightly-wrong segmentation results would lead to unrealistic try-on images with large artifacts. Inaccura
Virtual 3D try-on can provide an intuitive and realistic view for online shopping and has a huge potential commercial value. However, existing 3D virtual try-on methods mainly rely on annotated 3D human shapes and garment templates, which hinders the
This paper presents a learning-based clothing animation method for highly efficient virtual try-on simulation. Given a garment, we preprocess a rich database of physically-based dressed character simulations, for multiple body shapes and animations.
With the development of Generative Adversarial Network, image-based virtual try-on methods have made great progress. However, limited work has explored the task of video-based virtual try-on while it is important in real-world applications. Most exis
We propose a new generative model for 3D garment deformations that enables us to learn, for the first time, a data-driven method for virtual try-on that effectively addresses garment-body collisions. In contrast to existing methods that require an un