ﻻ يوجد ملخص باللغة العربية
The LIGO/Virgo collaboration has reported 50 BH-BH mergers and 8 additional candidates recovered from digging deeper into the detectors noise. Majority of these mergers have low effective spins pointing toward low BH spins and efficient angular momentum transport in massive stars as proposed by several models (e.g., Tayler-Spruit magnetic dynamo or Fuller model). However, out of these 58 mergers, 7 are consistent with having high effective spin parameter (chi_eff>0.3). Additionally, 2 out of these 7 events seem to have high effective spins sourced from the high spin of a primary (more massive) BH. The most extreme merger has very high primary BH dimensionless spin (a_1=0.9). These particular observations may be potentially used to discriminate between the isolated binary and dynamical globular cluster BH-BH formation channels. It may seem that high BH spins point to the dynamical origin if stars have efficient angular momentum transport and form low-spinning BHs. Then dynamical formation is required to produce second and third generations of BH-BH mergers that typically produce high-spinning BHs. Here we show that isolated binary BH-BH formation channel can naturally reproduce such highly spinning BHs. Our models start with efficient angular momentum transport in massive stars that is needed to reproduce majority of BH-BH mergers with low effective spins. However, some massive binaries are subject to strong tidal spin-up allowing for the formation of moderate fraction (~10%) of BH-BH mergers with high effective spins (chi_eff>0.4-0.5). Moreover, binary evolution can produce small fraction (~1%) of BH-BH mergers with almost maximally spinning primary BHs ($a_1>0.9$). Therefore, the formation scenario of those unusual BH-BH mergers remains unresolved.
The gravitational-wave detection by the LIGO-Virgo scientific collaboration shows that the black hole and neutron star (BH-NS) or BH-BH systems with a BH mass of tens of solar masses widely exist in the universe. Two main types of scenarios have been
The next generation of ground-based gravitational wave detectors may detect a few mergers of comparable-mass Msimeq 100-1000 Msun (intermediate-mass, or IMBH) spinning black holes. Black hole spin is known to have a significant impact on the orbit, m
While an axion-clouded black hole (BH) encounters a pulsar (PSR) or has a PSR companion, a gravitational molecule can be formed. In such a system, the axion cloud evolves at the binary hybrid orbitals, as it happens at microscopic level to electron c
Anisotropy of gravitational wave (GW) emission results in a net momentum gained by the black hole (BH) merger product, leading to a recoil velocity up to $sim10^3text{ km s}^{-1}$, which may kick it out of a globular cluster (GC). We estimate GW kick
Supermassive black holes (BHs) obey tight scaling relations between their mass and their host galaxy properties such as total stellar mass, velocity dispersion, and potential well depth. This has led to the development of self-regulated models for BH