ﻻ يوجد ملخص باللغة العربية
Ferroelectric HfO2 (fe-HfO2) has garnered increasing research interest for nonvolatile memories and low-power transistors. However, many challenges are to be resolved. One of them is the depolarizing effect that is commonly attributed to the formation of fe-HfO2: electrode interface. In addition to this interface, it is not hard to find that HfO2 is rarely used in isolation but most often in combination with non-ferroelectric dielectric in real device for practical reasons. This leads to the formation of fe-HfO2: dielectric interface. Recently, counterintuitive enhancement of ferroelectricity in fe-HfO2 grown on SiO2 has been discovered experimentally, opening up a previously unknown region in design space. Yet, a deeper understanding of the role of SiO2 in enabling the enhanced ferroelectricity in fe-HfO2 still lacks. Here, we investigate the electronic structures of ten fe-HfO2: oxide dielectric interfaces. We find that while in most cases, as expected, interface formation introduces depolarizing fields in fe-HfO2, SiO2 and GeO2 stand out as two abnormal dielectrics in the sense that they surprisingly hyperpolarize fe-HfO2, in consistence with the experimental findings. We provide explanations from a chemical bonding perspective. This work suggests that the interplay between fe-HfO2 and non-ferroelectric dielectric is nontrivial and cannot be neglected toward an improved understanding of HfO2 ferroelectricity.
Ferroelectric HfO2-based materials hold great potential for widespread integration of ferroelectricity into modern electronics due to their robust ferroelectric properties at the nanoscale and compatibility with the existing Si technology. Earlier wo
HfO2, a simple binary oxide, holds ultra-scalable ferroelectricity integrable into silicon technology. Polar orthorhombic (Pbc21) form in ultra-thin-films ascribes as the plausible root-cause of the astonishing ferroelectricity, which has thought not
First-principle study of bismuth-related oxygen-deficient centers ($=$Bi$cdots$Ge$equiv$, $=$Bi$cdots$Si$equiv$, and $=$Bi$cdots$Bi$=$ oxygen vacancies) in Bi$_2$O$_3$-GeO$_2$, Bi$_2$O$_3$-SiO$_2$, Bi$_2$O$_3$-Al$_2$O$_3$-GeO$_2$, and Bi$_2$O$_3$-Al$
A series of polycrystalline pyrochlore rare-earth titanate Ho_{2-x}Cr_xTi_2O_7 are synthesized in order to enhance the ferroelectricity of pyrochlore Ho2Ti2O7. For the sample close to the doping level x=0.4, a giant enhancement of polarization P up t
Ab initio techniques are used to calculate the effective work function (Weff) of a TiN/HfO2/SiO2/Si stack representing a metal-oxide-semiconductor (MOS) transistor gate taking into account first order many body effects. The required band offsets were