ﻻ يوجد ملخص باللغة العربية
With the ever-increasing use of web APIs in modern-day applications, it is becoming more important to test the system as a whole. In the last decade, tools and approaches have been proposed to automate the creation of system-level test cases for these APIs using evolutionary algorithms (EAs). One of the limiting factors of EAs is that the genetic operators (crossover and mutation) are fully randomized, potentially breaking promising patterns in the sequences of API requests discovered during the search. Breaking these patterns has a negative impact on the effectiveness of the test case generation process. To address this limitation, this paper proposes a new approach that uses agglomerative hierarchical clustering (AHC) to infer a linkage tree model, which captures, replicates, and preserves these patterns in new test cases. We evaluate our approach, called LT-MOSA, by performing an empirical study on 7 real-world benchmark applications w.r.t. branch coverage and real-fault detection capability. We also compare LT-MOSA with the two existing state-of-the-art white-box techniques (MIO, MOSA) for REST API testing. Our results show that LT-MOSA achieves a statistically significant increase in test target coverage (i.e., lines and branches) compared to MIO and MOSA in 4 and 5 out of 7 applications, respectively. Furthermore, LT-MOSA discovers 27 and 18 unique real-faults that are left undetected by MIO and MOSA, respectively.
GraphQL is a query language and thereupon-based paradigm for implementing web Application Programming Interfaces (APIs) for client-server interactions. Using GraphQL, clients define precise, nested data-requirements in typed queries, which are resolv
Automated debugging techniques, such as Fault Localisation (FL) or Automated Program Repair (APR), are typically designed under the Single Fault Assumption (SFA). However, in practice, an unknown number of faults can independently cause multiple test
Industrial cyber-physical systems require complex distributed software to orchestrate many heterogeneous mechatronic components and control multiple physical processes. Industrial automation software is typically developed in a model-driven fashion w
Automated unit test case generation tools facilitate test-driven development and support developers by suggesting tests intended to identify flaws in their code. Existing approaches are usually guided by the test coverage criteria, generating synthet
Combinatorial testing has been suggested as an effective method of creating test cases at a lower cost. However, industrially applicable tools for modeling and combinatorial test generation are still scarce. As a direct effect, combinatorial testing