ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast and Accurate Extrinsic Calibration for Multiple LiDARs and Cameras

96   0   0.0 ( 0 )
 نشر من قبل Xiyuan Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we propose a fast, accurate, and targetless extrinsic calibration method for multiple LiDARs and cameras based on adaptive voxelization. On the theory level, we incorporate the LiDAR extrinsic calibration with the bundle adjustment method. We derive the second-order derivatives of the cost function w.r.t. the extrinsic parameter to accelerate the optimization. On the implementation level, we apply the adaptive voxelization to dynamically segment the LiDAR point cloud into voxels with non-identical sizes, and reduce the computation time in the process of feature correspondence matching. The robustness and accuracy of our proposed method have been verified with experiments in outdoor test scenes under multiple LiDAR-camera configurations.



قيم البحث

اقرأ أيضاً

LiDAR is playing a more and more essential role in autonomous driving vehicles for objection detection, self localization and mapping. A single LiDAR frequently suffers from hardware failure (e.g., temporary loss of connection) due to the harsh vehic le environment (e.g., temperature, vibration, etc.), or performance degradation due to the lack of sufficient geometry features, especially for solid-state LiDARs with small field of view (FoV). To improve the system robustness and performance in self-localization and mapping, we develop a decentralized framework for simultaneous calibration, localization and mapping with multiple LiDARs. Our proposed framework is based on an extended Kalman filter (EKF), but is specially formulated for decentralized implementation. Such an implementation could potentially distribute the intensive computation among smaller computing devices or resources dedicated for each LiDAR and remove the single point of failure problem. Then this decentralized formulation is implemented on an unmanned ground vehicle (UGV) carrying 5 low-cost LiDARs and moving at $1.3m/s$ in urban environments. Experiment results show that the proposed method can successfully and simultaneously estimate the vehicle state (i.e., pose and velocity) and all LiDAR extrinsic parameters. The localization accuracy is up to 0.2% on the two datasets we collected. To share our findings and to make contributions to the community, meanwhile enable the readers to verify our work, we will release all our source codes and hardware design blueprint on our Github.
Combining multiple LiDARs enables a robot to maximize its perceptual awareness of environments and obtain sufficient measurements, which is promising for simultaneous localization and mapping (SLAM). This paper proposes a system to achieve robust and simultaneous extrinsic calibration, odometry, and mapping for multiple LiDARs. Our approach starts with measurement preprocessing to extract edge and planar features from raw measurements. After a motion and extrinsic initialization procedure, a sliding window-based multi-LiDAR odometry runs onboard to estimate poses with online calibration refinement and convergence identification. We further develop a mapping algorithm to construct a global map and optimize poses with sufficient features together with a method to model and reduce data uncertainty. We validate our approachs performance with extensive experiments on ten sequences (4.60km total length) for the calibration and SLAM and compare them against the state-of-the-art. We demonstrate that the proposed work is a complete, robust, and extensible system for various multi-LiDAR setups. The source code, datasets, and demonstrations are available at https://ram-lab.com/file/site/m-loam.
We present a new computational scheme that enables efficient and reliable Quantitative Trait Loci (QTL) scans for experimental populations. Using a standard brute-force exhaustive search effectively prohibits accurate QTL scans involving more than tw o loci to be performed in practice, at least if permutation testing is used to determine significance. Some more elaborate global optimization approaches, e.g. DIRECT, have earlier been adopted to QTL search problems. Dramatic speedups have been reported for high-dimensional scans. However, since a heuristic termination criterion must be used in these types of algorithms the accuracy of the optimization process cannot be guaranteed. Indeed, earlier results show that a small bias in the significance thresholds is sometimes introduced. Our new optimization scheme, PruneDIRECT, is based on an analysis leading to a computable (Lipschitz) bound on the slope of a transformed objective function. The bound is derived for both infinite size and finite size populations. Introducing a Lipschitz bound in DIRECT leads to an algorithm related to classical Lipschitz optimization. Regions in the search space can be permanently excluded (pruned) during the optimization process. Heuristic termination criteria can thus be avoided. Hence, PruneDIRECT has a well-defined error bound and can in practice be guaranteed to be equivalent to a corresponding exhaustive search. We present simulation results that show that for simultaneous mapping of three QTL using permutation testing, PruneDIRECT is typically more than 50 times faster than exhaustive search. The speedup is higher for stronger QTL. This could be used to quickly detect strong candidate eQTL networks.
Multi-LiDAR systems have been prevalently applied in modern autonomous vehicles to render a broad view of the environments. The rapid development of 5G wireless technologies has brought a breakthrough for current cellular vehicle-to-everything (C-V2X ) applications. Therefore, a novel localization and perception system in which multiple LiDARs are mounted around cities for autonomous vehicles has been proposed. However, the existing calibration methods require specific hard-to-move markers, ego-motion, or good initial values given by users. In this paper, we present a novel approach that enables automatic multi-LiDAR calibration using two poles stickered with retro-reflective tape. This method does not depend on prior environmental information, initial values of the extrinsic parameters, or movable platforms like a car. We analyze the LiDAR-pole model, verify the feasibility of the algorithm through simulation data, and present a simple method to measure the calibration errors w.r.t the ground truth. Experimental results demonstrate that our approach gains better flexibility and higher accuracy when compared with the state-of-the-art approach.
In this letter, we present a novel method for automatic extrinsic calibration of high-resolution LiDARs and RGB cameras in targetless environments. Our approach does not require checkerboards but can achieve pixel-level accuracy by aligning natural e dge features in the two sensors. On the theory level, we analyze the constraints imposed by edge features and the sensitivity of calibration accuracy with respect to edge distribution in the scene. On the implementation level, we carefully investigate the physical measuring principles of LiDARs and propose an efficient and accurate LiDAR edge extraction method based on point cloud voxel cutting and plane fitting. Due to the edges richness in natural scenes, we have carried out experiments in many indoor and outdoor scenes. The results show that this method has high robustness, accuracy, and consistency. It can promote the research and application of the fusion between LiDAR and camera. We have open-sourced our code on GitHub to benefit the community.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا