ﻻ يوجد ملخص باللغة العربية
Unsupervised domain adaptation aims to train a model from the labeled source domain to make predictions on the unlabeled target domain when the data distribution of the two domains is different. As a result, it needs to reduce the data distribution difference between the two domains to improve the models generalization ability. Existing methods tend to align the two domains directly at the domain-level, or perform class-level domain alignment based on deep feature. The former ignores the relationship between the various classes in the two domains, which may cause serious negative transfer, the latter alleviates it by introducing pseudo-labels of the target domain, but it does not consider the importance of performing class-level alignment on shallow feature representations. In this paper, we develop this work on the method of class-level alignment. The proposed method reduces the difference between two domains dramaticlly by aligning multi-level features. In the case that the two domains share the label space, the class-level alignment is implemented by introducing Multi-Level Feature Contrastive Networks (MLFCNet). In practice, since the categories of samples in target domain are unavailable, we iteratively use clustering algorithm to obtain the pseudo-labels, and then minimize Multi-Level Contrastive Discrepancy (MLCD) loss to achieve more accurate class-level alignment. Experiments on three real-world benchmarks ImageCLEF-DA, Office-31 and Office-Home demonstrate that MLFCNet compares favorably against the existing state-of-the-art domain adaptation methods.
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distance
Collecting well-annotated image datasets to train modern machine learning algorithms is prohibitively expensive for many tasks. One appealing alternative is rendering synthetic data where ground-truth annotations are generated automatically. Unfortun
Learning transferable and domain adaptive feature representations from videos is important for video-relevant tasks such as action recognition. Existing video domain adaptation methods mainly rely on adversarial feature alignment, which has been deri
Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned from a well-labeled source domain to an unlabeled target domain. Recently, adversarial domain adaptation with two distinct classifiers (bi-classifier) has been introduced i
Unsupervised domain adaptation (UDA) enables a learning machine to adapt from a labeled source domain to an unlabeled domain under the distribution shift. Thanks to the strong representation ability of deep neural networks, recent remarkable achievem