ﻻ يوجد ملخص باللغة العربية
We consider a simple control problem in which the underlying dynamics depend on a parameter that is unknown and must be learned. We exhibit a control strategy which is optimal to within a multiplicative constant. While most authors find strategies which are successful as the time horizon tends to infinity, our strategy achieves lowest expected cost up to a constant factor for a fixed time horizon.
We consider the problem of controlling an unknown linear quadratic Gaussian (LQG) system consisting of multiple subsystems connected over a network. Our goal is to minimize and quantify the regret (i.e. loss in performance) of our strategy with respe
The k-regret query aims to return a size-k subset S of a database D such that, for any query user that selects a data object from this size-k subset S rather than from database D, her regret ratio is minimized. The regret ratio here is modeled by the
We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for th
It is common to encounter the situation with uncertainty for decision makers (DMs) in dealing with a complex decision making problem. The existing evidence shows that people usually fear the extreme uncertainty named as the unknown. This paper report
In this paper we study an Ergodic Markovian BSDE involving a forward process $X$ that solves an infinite dimensional forward stochastic evolution equation with multiplicative and possibly degenerate diffusion coefficient. A concavity assumption on th