Semi-biproducts of monoids


الملخص بالإنكليزية

It is shown that the category of emph{semi-biproducts} of monoids is equivalent to the category of emph{pseudo-actions}. A semi-biproduct of monoids is a new notion, obtained through generalizing a biproduct of commutative monoids. By dropping commutativity and requiring some of the homomorphisms in the biproduct diagram to be merely identity-preserving maps, we obtain a semi-biproduct. A pseudo-action is a new notion as well. It consists of three ingredients: a pre-action, a factor system and a correction system. In the category of groups all correction systems are trivial. This is perhaps the reason why this notion, to the authors best knowledge, has never been considered before.

تحميل البحث