ﻻ يوجد ملخص باللغة العربية
The question how much star formation is occurring at low metallicity throughout the cosmic history appears crucial for the discussion of the origin of various energetic transients, and possibly - double black hole mergers. We revisit the observation-based distribution of birth metallicities of stars (f$_{rm SFR}$(Z,z)), focusing on several factors that strongly affect its low metallicity part: (i) the method used to describe the metallicity distribution of galaxies (redshift-dependent mass metallicity relation - MZR, or redshift-invariant fundamental metallicity relation - FMR), (ii) the contribution of starburst galaxies and (iii) the slope of the MZR. We empirically construct the FMR based on the low-redshift scaling relations, which allows us to capture the systematic differences in the relation caused by the choice of metallicity and star formation rate (SFR) determination techniques and discuss the related f$_{rm SFR}$(Z,z) uncertainty. We indicate factors that dominate the f$_{rm SFR}$(Z,z) uncertainty in different metallicity and redshift regimes. The low metallicity part of the distribution is poorly constrained even at low redshifts (even a factor of $sim$200 difference between the model variations) The non-evolving FMR implies a much shallower metallicity evolution than the extrapolated MZR, however, its effect on the low metallicity part of the f$_{rm SFR}$(Z,z) is counterbalanced by the contribution of starbursts (assuming that they follow the FMR). A non-negligible fraction of starbursts in our model may be necessary to satisfy the recent high-redshift SFR density constraints.
In recent years, exciting developments have taken place in the identification of the role of cosmic rays in star-forming environments. Observations from radio to infrared wavelengths and theoretical modelling have shown that low-energy cosmic rays (<
Metallicity is one of the crucial factors that determine stellar evolution. To characterize the properties of stellar populations one needs to know the fraction of stars forming at different metallicities. Knowing how this fraction evolves over time
We compare the impacts of uncertainties in both binary population synthesis models and the cosmic star formation history on the predicted rates of Gravitational Wave compact binary merger (GW) events. These uncertainties cause the predicted rates of
We constrain the stellar population properties of a sample of 52 massive galaxies, with stellar mass log Ms>10.5, over the redshift range 0.5<z<2 by use of observer-frame optical and near-infrared slitless spectra from HSTs ACS and WFC3 grisms. The d
The interstellar medium is a key ingredient that governs star formation in galaxies. We present a detailed study of the infrared (~ 1-500 micron) spectral energy distributions of a large sample of 193 nearby (z ~ 0.088) luminous infrared galaxies (LI