ﻻ يوجد ملخص باللغة العربية
Modeling biological rhythms helps understand the complex principles behind the physical and psychological abnormalities of human bodies, to plan life schedules, and avoid persisting fatigue and mood and sleep alterations due to the desynchronization of those rhythms. The first step in modeling biological rhythms is to identify their characteristics, such as cyclic periods, phase, and amplitude. However, human rhythms are susceptible to external events, which cause irregular fluctuations in waveforms and affect the characterization of each rhythm. In this paper, we present our exploratory work towards developing a computational framework for automated discovery and modeling of human rhythms. We first identify cyclic periods in time series data using three different methods and test their performance on both synthetic data and real fine-grained biological data. We observe consistent periods are detected by all three methods. We then model inner cycles within each period through identifying change points to observe fluctuations in biological data that may inform the impact of external events on human rhythms. The results provide initial insights into the design of a computational framework for discovering and modeling human rhythms.
Automation is becoming ubiquitous in all laboratory activities, leading towards precisely defined and codified laboratory protocols. However, the integration between laboratory protocols and mathematical models is still lacking. Models describe physi
We aimed to explore the utility of the recently developed open-source mobile health platform RADAR-base as a toolbox to rapidly test the effect and response to NPIs aimed at limiting the spread of COVID-19. We analysed data extracted from smartphone
Nosocomial infections place a substantial burden on health care systems and represent a major issue in current public health, requiring notable efforts for its prevention. Understanding the dynamics of infection transmission in a hospital setting is
We propose a novel two-stage Gene Set Gibbs Sampling (GSGS) framework, to reverse engineer signaling pathways from gene sets inferred from molecular profiling data. We hypothesize that signaling pathways are structurally an ensemble of overlapping li
Equation learning methods present a promising tool to aid scientists in the modeling process for biological data. Previous equation learning studies have demonstrated that these methods can infer models from rich datasets, however, the performance of