ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Number of Cholesky Roots of the Zero Matrix over F2

111   0   0.0 ( 0 )
 نشر من قبل Hays Whitlatch
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Hays Whitlatch




اسأل ChatGPT حول البحث

A square, upper-triangular matrix U is a Cholesky root of a matrix M provided U*U=M, where * represents the conjugate transpose. Over finite fields, as well as over the reals, it suffices for U^TU=M. In this paper, we investigate the number of such factorizations over the finite field with two elements, F2, and prove the existence of a rank-preserving bijection between the number of Cholesky roots of the zero matrix and the upper-triangular square roots the zero matrix.



قيم البحث

اقرأ أيضاً

236 - Jean Gallier 2013
In these notes, we consider the problem of finding the logarithm or the square root of a real matrix. It is known that for every real n x n matrix, A, if no real eigenvalue of A is negative or zero, then A has a real logarithm, that is, there is a re al matrix, X, such that e^X = A. Furthermore, if the eigenvalues, xi, of X satisfy the property -pi < Im(xi) < pi, then X is unique. It is also known that under the same condition every real n x n matrix, A, has a real square root, that is, there is a real matrix, X, such that X^2 = A. Moreover, if the eigenvalues, rho e^{i theta}, of X satisfy the condition -pi/2 < theta < pi/2, then X is unique. These theorems are the theoretical basis for various numerical methods for exponentiating a matrix or for computing its logarithm using a method known as scaling and squaring (resp. inverse scaling and squaring). Such methods play an important role in the log-Euclidean framework due to Arsigny, Fillard, Pennec and Ayache and its applications to medical imaging. Actually, there is a necessary and sufficient condition for a real matrix to have a real logarithm (or a real square root) but it is fairly subtle as it involves the parity of the number of Jordan blocks associated with negative eigenvalues. As far as I know, with the exception of Highams recent book, proofs of these results are scattered in the literature and it is not easy to locate them. Moreover, Highams excellent book assumes a certain level of background in linear algebra that readers interested in the topics of this paper may not possess so we feel that a more elementary presentation might be a valuable supplement to Higham. In these notes, I present a unified exposition of these results and give more direct proofs of some of them using the Real Jordan Form.
141 - Harry K. Hahn 2008
There are two basic number sequences which play a major role in the prime number distribution. The first Number Sequence SQ1 contains all prime numbers of the form 6n+5 and the second Number Sequence SQ2 contains all prime numbers of the form 6n+1. A ll existing prime numbers seem to be contained in these two number sequences, except of the prime numbers 2 and 3. Riemanns Zeta Function also seems to indicate, that there is a logical connection between the mentioned number sequences and the distribution of prime numbers. This connection is indicated by lines in the diagram of the Zeta Function, which are formed by the points s where the Zeta Function is real. Another key role in the distribution of the prime numbers plays the number 5 and its periodic occurrence in the two number sequences SQ1 and SQ2. All non-prime numbers in SQ1 and SQ2 are caused by recurrences of these two number sequences with increasing wave-lengths in themselves, in a similar fashion as Overtones (harmonics) or Undertones derive from a fundamental frequency. On the contrary prime numbers represent spots in these two basic Number Sequences SQ1 and SQ2 where there is no interference caused by these recurring number sequences. The distribution of the non-prime numbers and prime numbers can be described in a graphical way with a -Wave Model- (or Interference Model) -- see Table 2.
64 - Karsten Kruse 2020
The treated matrix equation $(1+ae^{-frac{|X|}{b}})X=Y$ in this short note has its origin in a modelling approach to describe the nonlinear time-dependent mechanical behaviour of rubber. We classify the solvability of $(1+ae^{-frac{|X|}{b}})X=Y$ in g eneral normed spaces $(E,|cdot|)$ w.r.t. the parameters $a,binmathbb{R}$, $b eq 0$, and give an algorithm to numerically compute its solutions in $E=mathbb{R}^{mtimes n}$, $m,ninmathbb{N}$, $m,ngeq 2$, equipped with the Frobenius norm.
288 - Jaykov Foukzon 2009
In this paper possible completion $^*R_{d}$ of the Robinson non-archimedean field $^*R$ constructed by Dedekind sections. Given an class of analytic functions of one complex variable $f in C[[z]]$,we investigate the arithmetic nature of the values of $f$ at transcendental points $e^{n}$. Main results are: 1) the both numbers $e+pi$ and $epi$ are irrational, 2) number $e^{e}$ is transcendental. Nontrivial generalization of the Lindemann-Weierstrass theorem is obtained
Using a new technique involving integration it is possible to find the exact roots of simple functions. In this case, simple functions are defined as smooth functions having an inverse, and that inverse having an antiderivative. This technique now ma kes it possible to find the exact roots of certain functions without the use of numerical or iterative methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا