ﻻ يوجد ملخص باللغة العربية
Domain generalization aims to learn an invariant model that can generalize well to the unseen target domain. In this paper, we propose to tackle the problem of domain generalization by delivering an effective framework named Variational Disentanglement Network (VDN), which is capable of disentangling the domain-specific features and task-specific features, where the task-specific features are expected to be better generalized to unseen but related test data. We further show the rationale of our proposed method by proving that our proposed framework is equivalent to minimize the evidence upper bound of the divergence between the distribution of task-specific features and its invariant ground truth derived from variational inference. We conduct extensive experiments to verify our method on three benchmarks, and both quantitative and qualitative results illustrate the effectiveness of our method.
We propose an algorithm, guided variational autoencoder (Guided-VAE), that is able to learn a controllable generative model by performing latent representation disentanglement learning. The learning objective is achieved by providing signals to the l
Domain adaptation aims to mitigate the domain gap when transferring knowledge from an existing labeled domain to a new domain. However, existing disentanglement-based methods do not fully consider separation between domain-invariant and domain-specif
We address the task of domain generalization, where the goal is to train a predictive model such that it is able to generalize to a new, previously unseen domain. We choose a hierarchical generative approach within the framework of variational autoen
To improve the generalization of detectors, for domain adaptive object detection (DAOD), recent advances mainly explore aligning feature-level distributions between the source and single-target domain, which may neglect the impact of domain-specific
Domain generalization (DG) aims to help models trained on a set of source domains generalize better on unseen target domains. The performances of current DG methods largely rely on sufficient labeled data, which however are usually costly or unavaila