ﻻ يوجد ملخص باللغة العربية
We explore an online learning reinforcement learning (RL) paradigm for optimizing parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a workload donation model, (2) a high-order workload estimation model, and (3) a communication cost model, to optimize the performance of data-parallel particle tracing dynamically. First, we design an RL-based workload donation model. Our workload donation model monitors the workload of processes and creates RL agents to donate particles and data blocks from high-workload processes to low-workload processes to minimize the execution time. The agents learn the donation strategy on-the-fly based on reward and cost functions. The reward and cost functions are designed to consider the processes workload change and the data transfer cost for every donation action. Second, we propose an online workload estimation model, in order to help our RL model estimate the workload distribution of processes in future computations. Third, we design the communication cost model that considers both block and particle data exchange costs, helping the agents make effective decisions with minimized communication cost. We demonstrate that our algorithm adapts to different flow behaviors in large-scale fluid dynamics, ocean, and weather simulation data. Our algorithm improves parallel particle tracing performance in terms of parallel efficiency, load balance, and costs of I/O and communication for evaluations up to 16,384 processors.
We consider the problem where $M$ agents interact with $M$ identical and independent environments with $S$ states and $A$ actions using reinforcement learning for $T$ rounds. The agents share their data with a central server to minimize their regret.
A longstanding goal in character animation is to combine data-driven specification of behavior with a system that can execute a similar behavior in a physical simulation, thus enabling realistic responses to perturbations and environmental variation.
Developing personal robots that can perform a diverse range of manipulation tasks in unstructured environments necessitates solving several challenges for robotic grasping systems. We take a step towards this broader goal by presenting the first RL-b
Deep reinforcement learning is successful in decision making for sophisticated games, such as Atari, Go, etc. However, real-world decision making often requires reasoning with partial information extracted from complex visual observations. This paper
Population-based multi-agent reinforcement learning (PB-MARL) refers to the series of methods nested with reinforcement learning (RL) algorithms, which produces a self-generated sequence of tasks arising from the coupled population dynamics. By lever