ترغب بنشر مسار تعليمي؟ اضغط هنا

Stably diffeomorphic manifolds and modified surgery obstructions

180   0   0.0 ( 0 )
 نشر من قبل Diarmuid Crowley
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For every $k geq 2$ we construct infinitely many $4k$-dimensional manifolds that are all stably diffeomorphic but pairwise not homotopy equivalent. Each of these manifolds has hyperbolic intersection form and is stably parallelisable. In fact we construct infinitely many such infinite sets. To achieve this we prove a realisation result for appropriate subsets of Krecks modified surgery monoid $ell_{2q+1}(mathbb{Z}[pi])$, analogous to Walls realisation of the odd-dimensional surgery obstruction $L$-group $L_{2q+1}^s(mathbb{Z}[pi])$.



قيم البحث

اقرأ أيضاً

145 - Lucas Culler 2014
Surgery triangles are an important computational tool in Floer homology. Given a connected oriented surface $Sigma$, we consider the abelian group $K(Sigma)$ generated by bordered 3-manifolds with boundary $Sigma$, modulo the relation that the three manifolds involved in any surgery triangle sum to zero. We show that $K(Sigma)$ is a finitely generated free abelian group and compute its rank. We also construct an explicit basis and show that it generates all bordered 3-manifolds in a certain stronger sense. Our basis is strictly contained in another finite generating set which was constructed previously by Baldwin and Bloom. As a byproduct we confirm a conjecture of Blokhuis and Brouwer on spanning sets for the binary symplectic dual polar space.
161 - Yu Guo , Li Yu 2008
It is shown that any closed three-manifold M obtained by integral surgery on a knot in the three-sphere can always be constructed from integral surgeries on a 3-component link L with each component being an unknot in the three-sphere. It is also inte resting to notice that infinitely many different integral surgeries on the same link L could give the same three-manifold M.
We define the stabilizing number $operatorname{sn}(K)$ of a knot $K subset S^3$ as the minimal number $n$ of $S^2 times S^2$ connected summands required for $K$ to bound a nullhomotopic locally flat disc in $D^4 # n S^2 times S^2$. This quantity is d efined when the Arf invariant of $K$ is zero. We show that $operatorname{sn}(K)$ is bounded below by signatures and Casson-Gordon invariants and bounded above by the topological $4$-genus $g_4^{operatorname{top}}(K)$. We provide an infinite family of examples with $operatorname{sn}(K)<g_4^{operatorname{top}}(K)$.
Suppose that $n eq p^k$ and $n eq 2p^k$ for all $k$ and all primes $p$. We prove that for any Hausdorff compactum $X$ with a free action of the symmetric group $mathfrak S_n$ there exists an $mathfrak S_n$-equivariant map $X to {mathbb R}^n$ whose im age avoids the diagonal ${(x,xdots,x)in {mathbb R}^n|xin {mathbb R}}$. Previously, the special cases of this statement for certain $X$ were usually proved using the equivartiant obstruction theory. Such calculations are difficult and may become infeasible past the first (primary) obstruction. We take a different approach which allows us to prove the vanishing of all obstructions simultaneously. The essential step in the proof is classifying the possible degrees of $mathfrak S_n$-equivariant maps from the boundary $partialDelta^{n-1}$ of $(n-1)$-simplex to itself. Existence of equivariant maps between spaces is important for many questions arising from discrete mathematics and geometry, such as Knesers conjecture, the Square Peg conjecture, the Splitting Necklace problem, and the Topological Tverberg conjecture, etc. We demonstrate the utility of our result applying it to one such question, a specific instance of envy-free division problem.
Surgery exact triangles in various 3-manifold Floer homology theories provide an important tool in studying and computing the relevant Floer homology groups. These exact triangles relate the invariants of 3-manifolds, obtained by three different Dehn surgeries on a fixed knot. In this paper, the behavior of $SU(N)$-instanton Floer homology with respect to Dehn surgery is studied. In particular, it is shown that there are surgery exact tetragons and pentagons, respectively, for $SU(3)$- and $SU(4)$-instanton Floer homologies. It is also conjectured that $SU(N)$-instanton Floer homology in general admits a surgery exact $(N+1)$-gon. An essential step in the proof is the construction of a family of asymptotically cylindrical metrics on ALE spaces of type $A_n$. This family is parametrized by the $(n-2)$-dimensional associahedron and consists of anti-self-dual metrics with positive scalar curvature. The metrics in the family also admit a torus symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا