ﻻ يوجد ملخص باللغة العربية
We study isotropic and slowly-rotating stars made of dark energy adopting the extended Chaplygin equation-of-state. We compute the moment of inertia as a function of the mass of the stars, both for rotating and non-rotating objects. The solution for the non-diagonal metric component as a function of the radial coordinate for three different star masses is shown as well. We find that i) the moment of inertia increases with the mass of the star, ii) in the case of non-rotating objects the moment of inertia grows faster, and iii) the curve corresponding to rotation lies below the one corresponding to non-rotating stars.
Gravitomagnetic quasi-normal modes of neutron stars are resonantly excited by tidal effects during a binary inspiral, leading to a potentially measurable effect in the gravitational-wave signal. We take an important step towards incorporating these e
We study the Vainshtein mechanism in the context of slowly rotating stars in scalar-tensor theories. While the Vainshtein screening is well established for spherically symmetric spacetimes, we examine its validity in the axisymmetric case for slowly
Using gravitational wave observations to search for deviations from general relativity in the strong-gravity regime has become an important research direction. Chern Simons (CS) gravity is one of the most frequently studied parity-violating models of
We investigate the properties of relativistic stars made of dark energy. We model stellar structure assuming i) isotropic perfect fluid and ii) a dark energy inspired equation of state, the generalized equation of state of Chaplygin gas, as we will b
In this paper we study the light bending caused by a slowly rotating source in the context of quadratic theories of gravity, in which the Einstein--Hilbert action is extended by additional terms quadratic in the curvature tensors. The deflection angl