ﻻ يوجد ملخص باللغة العربية
Graph neural networks exhibit remarkable performance in graph data analysis. However, the robustness of GNN models remains a challenge. As a result, they are not reliable enough to be deployed in critical applications. Recent studies demonstrate that GNNs could be easily fooled with adversarial perturbations, especially structural perturbations. Such vulnerability is attributed to the excessive dependence on the structure information to make predictions. To achieve better robustness, it is desirable to build the prediction of GNNs with more comprehensive features. Graph data, in most cases, has two views of information, namely structure information and feature information. In this paper, we propose CoG, a simple yet effective co-training framework to combine these two views for the purpose of robustness. CoG trains sub-models from the feature view and the structure view independently and allows them to distill knowledge from each other by adding their most confident unlabeled data into the training set. The orthogonality of these two views diversifies the sub-models, thus enhancing the robustness of their ensemble. We evaluate our framework on three popular datasets, and results show that CoG significantly improves the robustness of graph models against adversarial attacks without sacrificing their performance on clean data. We also show that CoG still achieves good robustness when both node features and graph structures are perturbed.
The vulnerability of machine learning systems to adversarial attacks questions their usage in many applications. In this paper, we propose a randomized diversification as a defense strategy. We introduce a multi-channel architecture in a gray-box sce
With the increasing popularity of graph-based learning, graph neural networks (GNNs) emerge as the essential tool for gaining insights from graphs. However, unlike the conventional CNNs that have been extensively explored and exhaustively tested, peo
Deep neural networks, while generalize well, are known to be sensitive to small adversarial perturbations. This phenomenon poses severe security threat and calls for in-depth investigation of the robustness of deep learning models. With the emergence
Many deep learning algorithms can be easily fooled with simple adversarial examples. To address the limitations of existing defenses, we devised a probabilistic framework that can generate an exponentially large ensemble of models from a single model
With the success of the graph embedding model in both academic and industry areas, the robustness of graph embedding against adversarial attack inevitably becomes a crucial problem in graph learning. Existing works usually perform the attack in a whi