ﻻ يوجد ملخص باللغة العربية
Observational signatures of the circumstellar material (CSM) around Type Ia supernovae (SNe Ia) provide a unique perspective to the progenitor systems. The pre-supernova evolution of the SN progenitors may naturally eject CSM in most of the popular scenarios of SN Ia explosions. In this study, we investigate the influence of dust scattering on the light curves and polarizations of SNe Ia. A Monte Carlo method is constructed to numerically solve the radiative transfer process through the CSM. Three types of geometric distributions of the CSM are considered: spherical shell, axisymmetric disk, and axisymmetric shell. We show that both the distance of the dust to the SNe and the geometric distribution of the dust affect the light curve and color evolutions of SNe. Contrary to previous studies, we found that the geometric location of the hypothetical CS dust cannot be reliably constrained based on photometric data alone even for the best observed cases such as SN 2006X and SN~2014J, and time dependent polarimetry is an inimitable way to establish the geometric location of any dusty CSM. Our model results show that time sequence of broad-band polarimetry with appropriate time coverage from a months to about one year after explosion can provide unambiguous limits on the presence of CS dust around SNe Ia.
We present a family of six BVI template light curves for SNe Ia for days -5 and +80, based on high-quality data gathered at CTIO. These templates display a wide range of light curve morphologies, with initial decline rates of their B light curves bet
CfAIR2 is a large homogeneously reduced set of near-infrared (NIR) light curves for Type Ia supernovae (SN Ia) obtained with the 1.3m Peters Automated InfraRed Imaging TELescope (PAIRITEL). This data set includes 4607 measurements of 94 SN Ia and 4 a
This paper provides a progress report on a collaborative program at the Las Campanas and Cerro Tololo Observatories to observe the near-IR light curves of Type Ia supernovae. We discuss how the morphologies of the JHK light curves change as a functio
Supernovae of type IIP are marked by the long plateau seen in their optical light curves. The plateau is believed to be the result of a recombination wave that propagates through the outflowing massive hydrogen envelope. Here, we analytically investi
The ESSENCE survey discovered 213 Type Ia supernovae at redshifts 0.1 < z < 0.81 between 2002 and 2008. We present their R and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO 4 m Blanco telescope, along with ra