ﻻ يوجد ملخص باللغة العربية
We investigate the quasi-bound states of a Coulomb impurity in graphene in the presence of a magnetic field. These states exhibit the dramatic and rather rare property of discrete scale invariance when the Coulomb potential is supercritical. We show using both Wentzel-Kramers-Brillouin (WKB) approximation and numerical studies that the supercritical states are converted to subcritical states as the field is increased. The local density of states is calculated and it shows direct signatures of discrete scale invariance. In a magnetic field, these signatures are gradually destroyed in a systematic way. Hence the effect that we propose can be detected via scanning tunneling microscope experiments. The range of magnetic field and energy resolution required are compatible with existing experimental setups. These experiments can be performed in a single sample by changing the field; they do not involve changing the nuclear charge.
We derive semiclassical quantization equations for graphene mono- and bilayer systems where the excitations are confined by the applied inhomogeneous magnetic field. The importance of a semiclassical phase, a consequence of the spinor nature of the e
We present a tight-binding theory of triangular graphene quantum dots (TGQD) with zigzag edge and broken sublattice symmetry in external magnetic field. The lateral size quantization opens an energy gap and broken sublattice symmetry results in a she
We theoretically study electronic properties of a graphene sheet on xy plane in a spatially nonuniform magnetic field, $B = B_0 hat{z}$ in one domain and $B = B_1 hat{z}$ in the other domain, in the quantum Hall regime and in the low-energy limit. We
Strain-inducing deformations in graphene alter charge distributions and provide a new method to design specific features in the band structure and transport properties. Novel approaches implement engineered substrates to induce specifically targeted
We study the Fourier transform of the local density of states (LDOS) in graphene in the presence of a single impurity at high magnetic field. We find that the most pronounced features occur for energies of the STM tip matching the Landau level energi