ﻻ يوجد ملخص باللغة العربية
The effect of linear chirp frequency on the process of electron-positron pairs production from vacuum in the combined potential wells is investigated by computational quantum field theory. Numerical results of electron number and energy spectrum under different frequency modulation parameters are obtained. By comparing with the fixed frequency, it is found that frequency modulation has a significant enhancement effect on the number of electrons. Especially when the frequency is small, appropriate frequency modulation enhances multiphoton processes in pair creation, thus promoting the pair creation. However, the number of electrons created by high frequency oscillating combined potential wells decreases after frequency modulation due to the phenomenon of high frequency suppression. The contours of the number of electrons varying with frequency and frequency modulation parameters are given, which may provide theoretical reference for possible experiments.
In this paper we show that electron-positron pairs can be pumped inexhaustibly with a constant production rate from the one dimensional potential well with oscillating depth or width. Bound states embedded in the the Dirac sea can be pulled out and p
The reactions of electron-positron to nucleon-antinucleon pairs are studied in a non-perturbative quark model. The work suggests that the two-step process, in which the primary quark-antiquark pair forms first a vector meson which in turn decays into
The correlated motion of a positron surrounded by electrons is a fundamental many-body problem. We approach this by modeling the momentum density of annihilating electron-positron pairs using the framework of reduced density matrices, natural orbital
The Compact Linear Collider (CLIC) is an option for a future e+e- collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. Thi
The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies: 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier,