ﻻ يوجد ملخص باللغة العربية
We investigate the non-equilibrium dynamics of a one-dimensional spin-1/2 XXZ model at zero-temperature in the regime $|Delta|< 1$, initially prepared in a product state with two domain walls i.e, $|downarrowdotsdownarrowuparrowdotsuparrowdownarrowdotsdownarrowrangle$. At early times, the two domain walls evolve independently and only after a calculable time a non-trivial interplay between the two emerges and results in the occurrence of a split Fermi sea. For $Delta=0$, we derive exact asymptotic results for the magnetization and the spin current by using a semi-classical Wigner function approach, and we exactly determine the spreading of entanglement entropy exploiting the recently developed tools of quantum fluctuating hydrodynamics. In the interacting case, we analytically solve the Generalized Hydrodynamics equation providing exact expressions for the conserved quantities. We display some numerical results for the entanglement entropy also in the interacting case and we propose a conjecture for its asymptotic value.
In spin chains with local unitary evolution preserving the magnetization $S^{rm z}$, the domain-wall state $left| dots uparrow uparrow uparrow uparrow uparrow downarrow downarrow downarrow downarrow downarrow dots right>$ typically melts. At large ti
We discuss the exact solution for the properties of the recently introduced ``necklace model for reptation. The solution gives the drift velocity, diffusion constant and renewal time for asymptotically long chains. Its properties are also related to
Exact analyses are given for two three-dimensional lattice systems: A system of close-packed dimers placed in layers of honeycomb lattices and a layered triangular-lattice interacting domain wall model, both with nontrivial interlayer interactions. W
We demonstrate that the exact non-equilibrium steady state of the one-dimensional Heisenberg XXZ spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product ansatz for the non-equilibrium density matrix where
All eigenstates and eigenvalues are determined for the spin- 1/2 $XXZ$ chain $H = 2J sum_i ( S_{i}^{x} S_{i + 1}^{x} + S_{i}^{y} S_{i + 1}^{y} + Delta S_i^z S_{i + 1}^{z})$ for rings with up to N=16 spins, for anisotropies $Delta=0 , cos(0.3pi)$, and