ﻻ يوجد ملخص باللغة العربية
We introduce a new integrable hierarchy of nonlinear differential-difference equations which we call constrained Toda hierarchy (C-Toda). It can be regarded as a certain subhierarchy of the 2D Toda lattice obtained by imposing the constraint $bar {cal L}={cal L}^{dag}$ on the two Lax operators (in the symmetric gauge). We prove the existence of the tau-function of the C-Toda hierarchy and show that it is the square root of the 2D Toda lattice tau-function. In this and some other respects the C-Toda is a Toda analogue of the CKP hierarchy. It is also shown that zeros of the tau-function of elliptic solutions satisfy the dynamical equations of the Ruijsenaars-Schneider model restricted to turning points in the phase space. The spectral curve has holomorphic involution which interchange the marked points in which the Baker-Akhiezer function has essential singularities.
We consider solutions of the 2D Toda lattice hierarchy which are elliptic functions of the zeroth time t_0=x. It is known that their poles as functions of t_1 move as particles of the elliptic Ruijsenaars-Schneider model. The goal of this paper is to
A characterization of the Kadomtsev-Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of
We derive a Hamiltonian structure for the $N$-particle hyperbolic spin Ruijsenaars-Schneider model by means of Poisson reduction of a suitable initial phase space. This phase space is realised as the direct product of the Heisenberg double of a facto
Using the determinant representation of gauge transformation operator, we have shown that the general form of $tau$ function of the $q$-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On
We conjecture the quantum analogue of the classical trace formulae for the integrals of motion of the quantum hyperbolic Ruijsenaars-Schneider model. This is done by departing from the classical construction where the corresponding model is obtained