ﻻ يوجد ملخص باللغة العربية
As the advanced driver assistance system (ADAS) functions become more sophisticated, the strategies that properly coordinate interaction and communication among the ADAS functions are required for autonomous driving. This paper proposes a derivative-free optimization based imitation learning method for the decision maker that coordinates the proper ADAS functions. The proposed method is able to make decisions in multi-lane highways timely with the LIDAR data. The simulation-based evaluation verifies that the proposed method presents desired performance.
Discretionary lane change (DLC) is a basic but complex maneuver in driving, which aims at reaching a faster speed or better driving conditions, e.g., further line of sight or better ride quality. Although many DLC decision-making models have been stu
Fast recognizing drivers decision-making style of changing lanes plays a pivotal role in safety-oriented and personalized vehicle control system design. This paper presents a time-efficient recognition method by integrating k-means clustering (k-MC)
Interpretation of common-yet-challenging interaction scenarios can benefit well-founded decisions for autonomous vehicles. Previous research achieved this using their prior knowledge of specific scenarios with predefined models, limiting their adapti
Learning from demonstrations has made great progress over the past few years. However, it is generally data hungry and task specific. In other words, it requires a large amount of data to train a decent model on a particular task, and the model often
Multi-agent path finding (MAPF) is an essential component of many large-scale, real-world robot deployments, from aerial swarms to warehouse automation. However, despite the communitys continued efforts, most state-of-the-art MAPF planners still rely