ﻻ يوجد ملخص باللغة العربية
Extended, old, and round stellar halos appear to be ubiquitous around high-mass dwarf galaxies ($10^{8.5}<M_star/M_odot<10^{9.6}$) in the observed universe. However, it is unlikely that these dwarfs have undergone a sufficient number of minor mergers to form stellar halos that are composed of predominantly accreted stars. Here, we demonstrate that FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulations are capable of producing dwarf galaxies with realistic structure, including both a thick disk and round stellar halo. Crucially, these stellar halos are formed in-situ, largely via the outward migration of disk stars. However, there also exists a large population of non-disky dwarfs in FIRE that lack a well-defined disk/halo and do not resemble the observed dwarf population. These non-disky dwarfs tend to be either more gas poor or to have burstier recent star formation histories than the disky dwarfs, suggesting that star formation feedback may be preventing disk formation. Both classes of dwarfs underscore the power of a galaxys intrinsic shape -- which is a direct quantification of the distribution of the galaxys stellar content -- to interrogate the feedback implementation in simulated galaxies.
We use a particle tracking analysis to study the origins of the circumgalactic medium (CGM), separating it into (1) accretion from the intergalactic medium (IGM), (2) wind from the central galaxy, and (3) gas ejected from other galaxies. Our sample c
We explore the stellar mass density and colour profiles of 118 low redshift, massive, central galaxies, selected to have assembled 90 percent of their stellar mass 6 Gyr ago, finding evidence of the minor merger activity expected to be the driver beh
The galaxy size-stellar mass and central surface density-stellar mass relationships are observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to variou
Stellar migration, whether due to trapping by transient spirals (churning), or to scattering by non-axisymmetric perturbations, has been proposed to explain the presence of stars in outer disks. After a review of the basic theory, we present compelli
We present a suite of cosmological zoom-in simulations at z>5 from the Feedback In Realistic Environments project, spanning a halo mass range M_halo~10^8-10^12 M_sun at z=5. We predict the stellar mass-halo mass relation, stellar mass function, and l