ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving the Extended Job Shop Scheduling Problem with AGVs -- Classical and Quantum Approaches

52   0   0.0 ( 0 )
 نشر من قبل Armin Wolf
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The subject of Job Scheduling Optimisation (JSO) deals with the scheduling of jobs in an organization, so that the single working steps are optimally organized regarding the postulated targets. In this paper a use case is provided which deals with a sub-aspect of JSO, the Job Shop Scheduling Problem (JSSP or JSP). As many optimization problems JSSP is NP-complete, which means the complexity increases with every node in the system exponentially. The goal of the use case is to show how to create an optimized duty rooster for certain workpieces in a flexible organized machinery, combined with an Autonomous Ground Vehicle (AGV), using Constraint Programming (CP) and Quantum Computing (QC) alternatively. The results of a classical solution based on CP and on a Quantum Annealing model are presented and discussed. All presented results have been elaborated in the research project PlanQK.



قيم البحث

اقرأ أيضاً

The Flexible Job Shop Scheduling Problem (FJSP) is a combinatorial problem that continues to be studied extensively due to its practical implications in manufacturing systems and emerging new variants, in order to model and optimize more complex situ ations that reflect the current needs of the industry better. This work presents a new meta-heuristic algorithm called GLNSA (Global-local neighborhood search algorithm), in which the neighborhood concepts of a cellular automaton are used, so that a set of leading solutions called smart_cells generates and shares information that helps to optimize instances of FJSP. The GLNSA algorithm is complemented with a tabu search that implements a simplified version of the Nopt1 neighborhood defined in [1] to complement the optimization task. The experiments carried out show a satisfactory performance of the proposed algorithm, compared with other results published in recent algorithms and widely cited in the specialized bibliography, using 86 test problems, improving the optimal result reported in previous works in two of them.
Priority dispatching rule (PDR) is widely used for solving real-world Job-shop scheduling problem (JSSP). However, the design of effective PDRs is a tedious task, requiring a myriad of specialized knowledge and often delivering limited performance. I n this paper, we propose to automatically learn PDRs via an end-to-end deep reinforcement learning agent. We exploit the disjunctive graph representation of JSSP, and propose a Graph Neural Network based scheme to embed the states encountered during solving. The resulting policy network is size-agnostic, effectively enabling generalization on large-scale instances. Experiments show that the agent can learn high-quality PDRs from scratch with elementary raw features, and demonstrates strong performance against the best existing PDRs. The learned policies also perform well on much larger instances that are unseen in training.
Previous research has shown that artificial immune systems can be used to produce robust schedules in a manufacturing environment. The main goal is to develop building blocks (antibodies) of partial schedules that can be used to construct backup solu tions (antigens) when disturbances occur during production. The building blocks are created based upon underpinning ideas from artificial immune systems and evolved using a genetic algorithm (Phase I). Each partial schedule (antibody) is assigned a fitness value and the best partial schedules are selected to be converted into complete schedules (antigens). We further investigate whether simulated annealing and the great deluge algorithm can improve the results when hybridised with our artificial immune system (Phase II). We use ten fixed solutions as our target and measure how well we cover these specific scenarios.
The manpower scheduling problem is a critical research field in the resource management area. Based on the existing studies on scheduling problem solutions, this paper transforms the manpower scheduling problem into a combinational optimization probl em under multi-constraint conditions from a new perspective. It also uses logical paradigms to build a mathematical model for problem solution and an improved multi-dimensional evolution algorithm for solving the model. Moreover, the constraints discussed in this paper basically cover all the requirements of human resource coordination in modern society and are supported by our experiment results. In the discussion part, we compare our model with other heuristic algorithms or linear programming methods and prove that the model proposed in this paper makes a 25.7% increase in efficiency and a 17% increase in accuracy at most. In addition, to the numerical solution of the manpower scheduling problem, this paper also studies the algorithm for scheduling task list generation and the method of displaying scheduling results. As a result, we not only provide various modifications for the basic algorithm to solve different condition problems but also propose a new algorithm that increases at least 28.91% in time efficiency by comparing with different baseline models.
The talent scheduling problem is a simplified version of the real-world film shooting problem, which aims to determine a shooting sequence so as to minimize the total cost of the actors involved. In this article, we first formulate the problem as an integer linear programming model. Next, we devise a branch-and-bound algorithm to solve the problem. The branch-and-bound algorithm is enhanced by several accelerating techniques, including preprocessing, dominance rules and caching search states. Extensive experiments over two sets of benchmark instances suggest that our algorithm is superior to the current best exact algorithm. Finally, the impacts of different parameter settings are disclosed by some additional experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا