ترغب بنشر مسار تعليمي؟ اضغط هنا

1st-Order Dynamics on Nonlinear Agents for Resource Allocation over Uniformly-Connected Networks

100   0   0.0 ( 0 )
 نشر من قبل Mohammadreza Doostmohammadian
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a general nonlinear 1st-order consensus-based solution for distributed constrained convex optimization is considered for applications in network resource allocation. The proposed continuous-time solution is used to optimize continuously-differentiable strictly convex cost functions over weakly-connected undirected multi-agent networks. The solution is anytime feasible and models various nonlinearities to account for imperfections and constraints on the (physical model of) agents in terms of their limited actuation capabilities, e.g., quantization and saturation constraints among others. Moreover, different applications impose specific nonlinearities to the model, e.g., convergence in fixed/finite-time, robustness to uncertainties, and noise-tolerant dynamics. Our proposed distributed resource allocation protocol generalizes such nonlinear models. Putting convex set analysis together with the Lyapunov theorem, we provide a general technique to prove convergence (i) regardless of the particular type of nonlinearity (ii) with weak network-connectivity requirement (i.e., uniform-connectivity). We simulate the performance of the protocol in continuous-time coordination of generators, known as the economic dispatch problem (EDP).



قيم البحث

اقرأ أيضاً

One of the key features of this paper is that the agents opinion of a social network is assumed to be not only influenced by the other agents but also by two marketers in competition. One of our contributions is to propose a pragmatic game-theoretica l formulation of the problem and to conduct the complete corresponding equilibrium analysis (existence, uniqueness, dynamic characterization, and determination). Our analysis provides practical insights to know how a marketer should exploit its knowledge about the social network to allocate its marketing or advertising budget among the agents (who are the consumers). By providing relevant definitions for the agent influence power (AIP) and the gain of targeting (GoT), the benefit of using a smart budget allocation policy instead of a uniform one is assessed and operating conditions under which it is potentially high are identified.
Pursuit-evasion games are ubiquitous in nature and in an artificial world. In nature, pursuer(s) and evader(s) are intelligent agents that can learn from experience, and dynamics (i.e., Newtonian or Lagrangian) is vital for the pursuer and the evader in some scenarios. To this end, this paper addresses the pursuit-evasion game of intelligent agents from the perspective of dynamics. A bio-inspired dynamics formulation of a pursuit-evasion game and baseline pursuit and evasion strategies are introduced at first. Then, reinforcement learning techniques are used to mimic the ability of intelligent agents to learn from experience. Based on the dynamics formulation and reinforcement learning techniques, the effects of improving both pursuit and evasion strategies based on experience on pursuit-evasion games are investigated at two levels 1) individual runs and 2) ranges of the parameters of pursuit-evasion games. Results of the investigation are consistent with nature observations and the natural law - survival of the fittest. More importantly, with respect to the result of a pursuit-evasion game of agents with baseline strategies, this study achieves a different result. It is shown that, in a pursuit-evasion game with a dynamics formulation, an evader is not able to escape from a slightly faster pursuer with an effective learned pursuit strategy, based on agile maneuvers and an effective learned evasion strategy.
In this paper, we consider the problem of optimally coordinating the response of a group of distributed energy resources (DERs) so they collectively meet the electric power demanded by a collection of loads, while minimizing the total generation cost and respecting the DER capacity limits. This problem can be cast as a convex optimization problem, where the global objective is to minimize a sum of convex functions corresponding to individual DER generation cost, while satisfying (i) linear inequality constraints corresponding to the DER capacity limits and (ii) a linear equality constraint corresponding to the total power generated by the DERs being equal to the total power demand. We develop distributed algorithms to solve the DER coordination problem over time-varying communication networks with either bidirectional or unidirectional communication links. The proposed algorithms can be seen as distribute
This paper proposes networked dynamics to solve resource allocation problems over time-varying multi-agent networks. The state of each agent represents the amount of used resources (or produced utilities) while the total amount of resources is fixed. The idea is to optimally allocate the resources among the group of agents by minimizing the overall cost function subject to fixed sum of resources. Each agents information is restricted to its own state and cost function and those of its immediate in-neighbors. This is motivated by distributed applications such as mobile edge-computing, economic dispatch over smart grids, and multi-agent coverage control. This work provides a fast convergent solution (in comparison with linear dynamics) while considering relaxed network connectivity with quantized communication links. The proposed dynamics reaches optimal solution over switching (possibly disconnected) undirected networks as far as their union over some bounded non-overlapping time-intervals has a spanning-tree. We prove feasibility of the solution, uniqueness of the optimal state, and convergence to the optimal value under the proposed dynamics, where the analysis is applicable to similar 1st-order allocation dynamics with strongly sign-preserving nonlinearities, such as actuator saturation.
In this paper, we consider the problem of estimating a scalar field using a network of mobile sensors which can measure the value of the field at their instantaneous location. The scalar field to be estimated is assumed to be represented by positive definite radial basis kernels and we use techniques from adaptive control and Lyapunov analysis to prove the stability of the proposed estimation algorithm. The convergence of the estimated parameter values to the true values is guaranteed by planning the motion of the mobile sensors to satisfy persistence-like conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا