ﻻ يوجد ملخص باللغة العربية
Aims. The catalog of Stars With ExoplanETs (SWEET-Cat) was originally introduced in 2013. Since then many more exoplanets have been confirmed, increasing significantly the number of host stars listed there. A crucial step toward a comprehensive understanding of these new worlds is the precise and homogeneous characterization of their host stars. Better spectroscopic stellar parameters along with new results from Gaia eDR3 provide updated and precise parameters for the discovered planets. A new version of the catalog, whose homogeneity in the derivation of the parameters is key to unraveling star-planet connections, is available to the community. Methods. We made use of high-resolution spectra for planet-host stars, either observed by our team or collected through public archives. The spectroscopic stellar parameters were derived for the spectra following the same homogeneous process using ARES and MOOG (ARES+MOOG) as for the previous SWEET-Cat releases. We re-derived parameters for the stars in the catalog using better quality spectra and/or using the most rece
Context: Exoplanets have now been proven to be very common. The number of its detections continues to grow following the development of better instruments and missions. One key step for the understanding of these worlds is their characterization, whi
Context: Thanks to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extrasolar planets is of great rele
We infer distances and their asymmetric uncertainties for two million stars using the parallaxes published in the Gaia DR1 (GDR1) catalogue. We do this with two distance priors: A minimalist, isotropic prior assuming an exponentially decreasing space
Pulsating stars, such as Cepheids, Miras, and RR Lyrae stars, are important distance indicators and calibrators of the cosmic distance ladder, and yet their period-luminosity-metallicity (PLZ) relations are still constrained using simple statistical
Context. The astrometric satellite Gaia is expected to significantly increase our knowledge as to the properties of the Milky Way. The Gaia Early Data Release 3 (Gaia EDR3) provides the most precise parallaxes for many OB stars, which can be used to