ﻻ يوجد ملخص باللغة العربية
We demonstrate that the multipoles associated with the density matrix are truly observable quantities that can be unambiguously determined from intensity moments. Given their correct transformation properties, these multipoles are the natural variables to deal with a number of problems in the quantum domain. In the case of polarization, the moments are measured after the light has passed through two quarter-wave plates, one half-wave plate, and a polarizing beam splitter for specific values of the angles of the waveplates. For more general two-mode problems, equivalent measurements can be performed.
The higher order multipoles above the electric quadrupole are commonly neglected in metamaterial homogenization. We show that they nevertheless can be significant when second order spatial dispersive effects, such as the magnetic response, are consid
Higher-order topological phase as a generalization of Berry phase attracts an enormous amount of research. The current theoretical models supporting higher-order topological phases, however, cannot give the connection between lower and higher-order t
We advocate for a simple multipole expansion of the polarization density matrix. The resulting multipoles are used to construct bona fide quasiprobability distributions that appear as a sum of successive moments of the Stokes variables; the first one
Second order correlations reveal quantum beats from a coherent ground-state superposition on the undriven mode of a two-mode cavity QED system. Continuous drive induces decoherence due to Rayleigh scattering. We control this with feedback and explore
In recent years, it has been shown that Berry curvature monopoles and dipoles play essential roles in the anomalous Hall effect and the nonlinear Hall effect respectively. In this work, we demonstrate that Berry curvature multipoles (the higher momen