ﻻ يوجد ملخص باللغة العربية
One of the most promising applications in nanoscience is the design of new materials to improve water permeability and selectivity of nanoporous membranes. Understanding the molecular architecture behind these fascinating structures and how it impacts the water flow is an intricate but necessary task. We studied here, the water flux through multi-layered nanoporous molybdenum disulfide (MLNMoS$_2$) membranes with different nanopore sizes and length. Molecular dynamics simulations show that the permeability do not increase with the inverse of the membrane thickness, violating the classical hydrodynamic behavior. The data also reveals that the water dynamics is slower than that observed in frictionless carbon nanotubes and multi-layer graphene membranes, which we explain in terms of an anchor mechanism observed in between layers. We show that the membrane permeability is critically dependent on the nanopore architecture, bringing important insights into the manufacture of new desalination membranes.
Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [Science 363, 151-155 (2019)] phenine nanotube (PNT) for water desalination a
A lattice model is presented for the simulation of dynamics in polymeric systems. Each polymer is represented as a chain of monomers, residing on a sequence of nearest-neighbor sites of a face-centered-cubic lattice. The polymers are self- and mutual
Halogen bonding has emerged as an important noncovalent interaction in a myriad of applications, including drug design, supramolecular assembly, and catalysis. Current understanding of the halogen bond is informed by electronic structure calculations
Membranes derived from ultrathin polymeric films are promising to meet fast separations, but currently available approaches to produce polymer films with greatly reduced thicknesses on porous supports still faces challenges. Here, defect-free ultrath
An accurate description of the structure and dynamics of interfacial water is essential for phospholipid membranes, since it determines their function and their interaction with other molecules. Here we consider water confined in stacked membranes wi