ترغب بنشر مسار تعليمي؟ اضغط هنا

Entangling-gate error from coherently displaced motional modes of trapped ions

108   0   0.0 ( 0 )
 نشر من قبل Brandon Ruzic
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entangling gates in trapped-ion quantum computing have primarily targeted stationary ions with initial motional distributions that are thermal and close to the ground state. However, future systems will likely incur significant non-thermal excitation due to, e.g., ion transport, longer operational times, and increased spatial extent of the trap array. In this paper, we analyze the impact of such coherent motional excitation on entangling-gate error by performing simulations of Molmer-Sorenson (MS) gates on a pair of trapped-ion qubits with both thermal and coherent excitation present in a shared motional mode at the start of the gate. We discover that a small amount of coherent displacement dramatically erodes gate performance in the presence of experimental noise, and we demonstrate that applying only limited control over the phase of the displacement can suppress this error. We then use experimental data from transported ions to analyze the impact of coherent displacement on MS-gate error under realistic conditions.



قيم البحث

اقرأ أيضاً

We implement a two-qubit entangling M{o}lmer-S{o}rensen interaction by transporting two co-trapped $^{40}mathrm{Ca}^{+}$ ions through a stationary, bichromatic optical beam within a surface-electrode Paul trap. We describe a procedure for achieving a constant Doppler shift during the transport which uses fine temporal adjustment of the moving confinement potential. The fixed interaction duration of the ions transported through the laser beam as well as the dynamically changing ac Stark shift require alterations to the calibration procedures used for a stationary gate. We use the interaction to produce Bell states with fidelities commensurate to those of stationary gates performed in the same system. This result establishes the feasibility of actively incorporating ion transport into quantum information entangling operations.
Generating quantum entanglement in large systems on time scales much shorter than the coherence time is key to powerful quantum simulation and computation. Trapped ions are among the most accurately controlled and best isolated quantum systems with l ow-error entanglement gates operated via the vibrational motion of a few-ion crystal within tens of microseconds. To exceed the level of complexity tractable by classical computers the main challenge is to realise fast entanglement operations in large ion crystals. The strong dipole-dipole interactions in polar molecule and Rydberg atom systems allow much faster entangling gates, yet stable state-independent confinement comparable with trapped ions needs to be demonstrated in these systems. Here, we combine the benefits of these approaches: we report a $700,mathrm{ns}$ two-ion entangling gate which utilises the strong dipolar interaction between trapped Rydberg ions and produce a Bell state with $78%$ fidelity. The sources of gate error are identified and a total error below $0.2%$ is predicted for experimentally-achievable parameters. Furthermore, we predict that residual coupling to motional modes contributes $sim 10^{-4}$ gate error in a large ion crystal of 100 ions. This provides a new avenue to significantly speed up and scale up trapped ion quantum computers and simulators.
We have measured motional heating rates of trapped atomic ions, a factor that can influence multi-ion quantum logic gate fidelities. Two simplified techniques were developed for this purpose: one relies on Raman sideband detection implemented with a single laser source, while the second is even simpler and is based on time-resolved fluorescence detection during Doppler recooling. We applied these methods to determine heating rates in a microfrabricated surface-electrode trap made of gold on fused quartz, which traps ions 40 microns above its surface. Heating rates obtained from the two techniques were found to be in reasonable agreement. In addition, the trap gives rise to a heating rate of 300 plus or minus 30 per second for a motional frequency of 5.25 MHz, substantially below the trend observed in other traps.
We study the entangling power of a nanoelectromechanical system (NEMS) simultaneously interacting with two separately trapped ions. To highlight this entangling capability, we consider a special regime where the ion-ion coupling does not generate ent anglement in the system, and any resulting entanglement will be the result of the NEMS acting as an entangling device. We study the dynamical behavior of the bipartite NEMS-induced ion-ion entanglement as well as the tripartite entanglement of the whole system (ions+NEMS). We found some quite remarkable phenomena in this hybrid system. For instance, the two trapped ions initially uncorrelated and prepared in coherent states can become entangled by interacting with a nanoelectromechanical resonator (also prepared in a coherent state) as soon as the ion-NEMS coupling achieve a certain value, and this can be controlled by external voltage gate on the NEMS device.
To achieve scalable quantum computing, improving entangling-gate fidelity and its implementation-efficiency are of utmost importance. We present here a linear method to construct provably power-optimal entangling gates on an arbitrary pair of qubits on a trapped-ion quantum computer. This method leverages simultaneous modulation of amplitude, frequency, and phase of the beams that illuminate the ions and, unlike the state of the art, does not require any search in the parameter space. The linear method is extensible, enabling stabilization against external parameter fluctuations to an arbitrary order at a cost linear in the order. We implement and demonstrate the power-optimal, stabilized gate on a trapped-ion quantum computer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا