ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the spatially dependent cosmic-ray propagation model from Bayesian Analysis

221   0   0.0 ( 0 )
 نشر من قبل Mengjie Zhao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The energy spectra of primary and secondary cosmic rays (CR) generally harden at several hundreds of GeV, which can be naturally interpreted by propagation effects. We adopt a spatially dependent CR propagation model to fit the spectral hardening, where a slow-diffusion disk (SDD) is assumed near the Galactic plane. We aim to constrain the propagation parameters with the Bayesian parameter estimation based on a Markov chain Monte Carlo sampling algorithm. The latest precise measurements of carbon spectrum and B/C ratio are adopted in the Bayesian analysis. The $rm{^{10}Be/^{9}Be}$ and Be/B ratios are also included to break parameter degeneracies. The fitting result shows that all the parameters are well constrained. Especially, the thickness of the SDD is limited to 0.4-0.5 kpc above and below the Galactic plane, which could be the best constraint for the slow-diffusion region among similar works. The $bar{p}/p$ ratio and amplitude of CR anisotropy predicted by the SDD model are consistent with the observations, while the predicted high-energy electron and positron fluxes are slightly and significantly lower than the observations, respectively, indicating the necessity of extra sources.



قيم البحث

اقرأ أيضاً

Research in many areas of modern physics such as, e.g., indirect searches for dark matter and particle acceleration in SNR shocks, rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio, microwave, X-rays, gamma rays). W hile very detailed numerical models of CR propagation exist, a quantitative statistical analysis of such models has been so far hampered by the large computational effort that those models require. Although statistical analyses have been carried out before using semi-analytical models (where the computation is much faster), the evaluation of the results obtained from such models is difficult, as they necessarily suffer from many simplifying assumptions, The main objective of this paper is to present a working method for a full Bayesian parameter estimation for a numerical CR propagation model. For this study, we use the GALPROP code, the most advanced of its kind, that uses astrophysical information, nuclear and particle data as input to self-consistently predict CRs, gamma rays, synchrotron and other observables. We demonstrate that a full Bayesian analysis is possible using nested sampling and Markov Chain Monte Carlo methods (implemented in the SuperBayeS code) despite the heavy computational demands of a numerical propagation code. The best-fit values of parameters found in this analysis are in agreement with previous, significantly simpler, studies also based on GALPROP.
296 - Jia-Shu Niu , Hui-Fang Xue 2019
In this work, we considered 2 schemes (a high-rigidity break in primary source injections and a high-rigidity break in diffusion coefficient) to reproduce the newly released AMS-02 nuclei spectra (He, C, N, O, Li, Be, and B) when the rigidity larger than 50 GV. The fitting results show that current data set favors a high-rigidity break at $sim 325 mathrm{GV}$ in diffusion coefficient rather than a break at $sim 365 mathrm{GV}$ in primary source injections. Meanwhile, the fitted values of the factors to rescale the cosmic-ray (CR) flux of secondary species/components after propagation show us that the secondary flux are underestimated in current propagation model. It implies that we might locate in a slow diffusion zone, in which the CRs propagate with a small value of diffusion coefficient compared with the averaged value in the galaxy. Another hint from the fitting results show that extra secondary CR nuclei injection may be needed in current data set. All these new hints should be paid more attention in future research.
Galactic Cosmic-ray (CR) transport parameters are usually constrained by the boron-to-carbon ratio. This procedure is generically plagued with degeneracies between the diffusion coefficient and the vertical extent of the Galactic magnetic halo. The l atter is of paramount importance for indirect dark matter (DM) searches, because it fixes the amount of DM annihilation or decay that contributes to the local antimatter CR flux. These degeneracies could be broken by using secondary radioactive species, but the current data still have large error bars, and this method is extremely sensitive to the very local interstellar medium (ISM) properties. Here, we propose to use the low-energy CR positrons in the GeV range as another direct constraint on diffusion models. We show that the PAMELA data disfavor small diffusion halo ($Llesssim 3$ kpc) and large diffusion slope models, and exclude the minimal ({em min}) configuration (Maurin et al. 2001, Donato et al. 2004) widely used in the literature to bracket the uncertainties in the DM signal predictions. This is complementary to indirect constraints (diffuse radio and gamma-ray emissions) and has strong impact on DM searches. Indeed this makes the antiproton constraints more robust while enhancing the discovery/exclusion potential of current and future experiments, like AMS-02 and GAPS, especially in the antiproton and antideuteron channels.
86 - Qiang Yuan 2018
We study the propagation and injection models of cosmic rays using the latest measurements of the Boron-to-Carbon ratio and fluxes of protons, Helium, Carbon, and Oxygen nuclei by the Alpha Magnetic Spectrometer and the Advanced Composition Explorer at top of the Earth, and the Voyager spacecraft outside the heliosphere. The ACE data during the same time interval of the AMS-02 data are extracted to minimize the complexity of the solar modulation effect. We find that the cosmic ray nucleus data favor a modified version of the diffusion-reacceleration scenario of the propagation. The diffusion coefficient is, however, required to increase moderately with decreasing rigidity at low energies, which has interesting implications on the particle and plasma interaction in the Milky Way. We further find that the low rigidity ($<$ a few GV) injection spectra are different for different compositions. The injection spectra are softer for lighter nuclei. These results are expected to be helpful in understanding the acceleration process of cosmic rays.
132 - Julien Lavalle 2011
Some direct detection experiments have recently collected excess events that could be interpreted as a dark matter (DM) signal, pointing to particles in the $sim$10 GeV mass range. We show that scenarios in which DM can self-annihilate with significa nt couplings to quarks are likely excluded by the cosmic-ray (CR) antiproton data, provided the annihilation is S-wave dominated when DM decouples in the early universe. These limits apply to most of supersymmetric candidates, eg in the minimal supersymmetric standard model (MSSM) and in the next-to-MSSM (NMSSM), and more generally to any thermal DM particle with hadronizing annihilation final states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا