ﻻ يوجد ملخص باللغة العربية
Microscopic speed limits that constrain the motion of matter, energy, and information abound in physics, from the ultimate speed limit set by light to Lieb-Robinson speed limits in quantum spin systems. In addition to these state-independent speed limits, systems can also be governed by emergent state-dependent speed limits indicating slow dynamics arising, for example, from slow low-energy quasiparticles. Here we describe a different kind of speed limit: a situation where complex information/entanglement spreads rapidly, in a fashion inconsistent with any speed limit, but where simple signals continue to obey an approximate speed limit. If we take the point of view that the motion of simple signals defines the local spacetime geometry of the universe, then the effects we describe show that spacetime locality can be compatible with a high degree of non-local interactions provided these are sufficiently chaotic. With this perspective, we sharpen a puzzle about black holes recently raised by Shor and propose a schematic resolution.
We prove an upper bound on the diffusivity of a general local and translation invariant quantum Markovian spin system: $D leq D_0 + left(alpha , v_text{LR} tau + beta , xi right) v_text{C}$. Here $v_text{LR}$ is the Lieb-Robinson velocity, $v_text{C}
In this article, using the principles of Random Matrix Theory (RMT), we give a measure of quantum chaos by quantifying Spectral From Factor (SFF) appearing from the computation of two-point Out of Time Order Correlation function (OTOC) expressed in t
This article tackles a fundamental long-standing problem in quantum chaos, namely, whether quantum chaotic systems can exhibit sensitivity to initial conditions, in a form that directly generalizes the notion of classical chaos in phase space. We dev
The correspondence principle is a cornerstone in the entire construction of quantum mechanics. This principle has been recently challenged by the observation of an early-time exponential increase of the out-of-time-ordered correlator (OTOC) in classi
The spectral form factor (SFF), characterizing statistics of energy eigenvalues, is a key diagnostic of many-body quantum chaos. In addition, partial spectral form factors (pSFFs) can be defined which refer to subsystems of the many-body system. They