ﻻ يوجد ملخص باللغة العربية
Drosophila melanogaster hemocytes are highly motile cells that are crucial for successful embryogenesis and have important roles in the organisms immunological response. Hemocyte motion was measured using selective plane illumination microscopy. Every hemocyte cell in one half of an embryo was tracked during embryogenesis and analysed using a deep learning neural network. The anomalous transport of the cells was well described by fractional Brownian motion that was heterogeneous in both time and space. Hemocyte motion became less persistent over time. LanB1 and SCAR mutants disrupted the collective cellular motion and reduced its persistence due to the modification of viscoelasticity and actin-based motility respectively. The anomalous motility of the hemocytes oscillated in time with alternating epoques of varying persistent motion. Touching hemocytes experience synchronised contact inhibition of locomotion; an anomalous tango. A quantitative statistical framework is presented for hemocyte motility which provides new biological insights.
Tracking the dynamics of fluorescent nanoparticles during embryonic development allows insights into the physical state of the embryo and, potentially, molecular processes governing developmental mechanisms. In this work, we investigate the motion of
The alarming growth of the antibiotic-resistant superbugs methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) is driving the development of new technologies to investigate antibiotics and their modes of acti
The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimat
Aging affects almost all aspects of an organism -- its morphology, its physiology, its behavior. Isolating which biological mechanisms are regulating these changes, however, has proven difficult, potentially due to our inability to characterize the f
Motile biological cells in tissue often display the phenomenon of durotaxis, i.e. they tend to move towards stiffer parts of substrate tissue. The mechanism for this behavior is not completely understood. We consider simplified models for durotaxis b