ﻻ يوجد ملخص باللغة العربية
Square-root (loss) regularized models have recently become popular in linear regression due to their nice statistical properties. Moreover, some of these models can be interpreted as the distributionally robust optimization counterparts of the traditional least-squares regularized models. In this paper, we give a unified proof to show that any square-root regularized model whose penalty function being the sum of a simple norm and a seminorm can be interpreted as the distributionally robust optimization (DRO) formulation of the corresponding least-squares problem. In particular, the optimal transport cost in the DRO formulation is given by a certain dual form of the penalty. To solve the resulting square-root regularized model whose loss function and penalty function are both nonsmooth, we design a proximal point dual semismooth Newton algorithm and demonstrate its efficiency when the penalty is the sparse group Lasso penalty or the fused Lasso penalty. Extensive experiments demonstrate that our algorithm is highly efficient for solving the square-root sparse group Lasso problems and the square-root fused Lasso problems.
Wasserstein distance-based distributionally robust optimization (DRO) has received much attention lately due to its ability to provide a robustness interpretation of various learning models. Moreover, many of the DRO problems that arise in the learni
In this paper, we propose a discretization scheme for the two-stage stochastic linear complementarity problem (LCP) where the underlying random data are continuously distributed. Under some moderate conditions, we derive qualitative and quantitative
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity set
Wasserstein textbf{D}istributionally textbf{R}obust textbf{O}ptimization (DRO) is concerned with finding decisions that perform well on data that are drawn from the worst-case probability distribution within a Wasserstein ball centered at a certain n
We investigate a class of constrained sparse regression problem with cardinality penalty, where the feasible set is defined by box constraint, and the loss function is convex, but not necessarily smooth. First, we put forward a smoothing fast iterati