Asymmetric longitudinal flow decorrelations in proton-nucleus collisions


الملخص بالإنكليزية

Proton-nucleus collisions provide a unique environment for studying the origin of anisotropic flows and the longitudinal properties of relativistic nuclear collisions. We perform the first event-by-event hydrodynamic simulations of asymmetric longitudinal decorrelations of elliptic, triangular and quadrangular flows in proton-lead collisions at the LHC. A set of rapidity-asymmetric decorrelation functions are proposed to measure the longitudinal flow decorrelations for asymmetric collision systems. Our result shows that the flow decorrelations in proton-going direction are larger than those in lead-going direction. We also compute rapidity-asymmetric and rapidity-symmetrized flow decorrelations in proton-gold collisions at RHIC, which exhibit larger decorrelation effects compared to the LHC. Further experimental and theoretical studies of longitudinal flow decorrelations in various symmetric and asymmetric systems across different colliding energies should provide powerful tools to probe the three-dimensional structure and evolution dynamics of relativistic nuclear collisions.

تحميل البحث