ﻻ يوجد ملخص باللغة العربية
Proton-nucleus collisions provide a unique environment for studying the origin of anisotropic flows and the longitudinal properties of relativistic nuclear collisions. We perform the first event-by-event hydrodynamic simulations of asymmetric longitudinal decorrelations of elliptic, triangular and quadrangular flows in proton-lead collisions at the LHC. A set of rapidity-asymmetric decorrelation functions are proposed to measure the longitudinal flow decorrelations for asymmetric collision systems. Our result shows that the flow decorrelations in proton-going direction are larger than those in lead-going direction. We also compute rapidity-asymmetric and rapidity-symmetrized flow decorrelations in proton-gold collisions at RHIC, which exhibit larger decorrelation effects compared to the LHC. Further experimental and theoretical studies of longitudinal flow decorrelations in various symmetric and asymmetric systems across different colliding energies should provide powerful tools to probe the three-dimensional structure and evolution dynamics of relativistic nuclear collisions.
Color fluctuations in hadron-hadron collisions are responsible for the presence of inelastic diffraction and lead to distinctive differences between the Gribov picture of high energy scattering and the low energy Glauber picture. We find that color f
Using a model based on the Color Glass Condensate framework and the dilute-dense factorization, we systematically study the azimuthal angular correlations between a heavy flavor meson and a light reference particle in proton-nucleus collisions. The o
The propagation of the heavy quarks produced in relativistic nucleus-nucleus collisions at RHIC and LHC is studied within the framework of Langevin dynamics in the background of an expanding deconfined medium described by ideal and viscous hydrodynam
The stochastic dynamics of c and b quarks in the fireball created in nucleus-nucleus collisions at RHIC and LHC is studied employing a relativistic Langevin equation, based on a picture of multiple uncorrelated random collisions with the medium. Heav
We compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the