ﻻ يوجد ملخص باللغة العربية
To ensure a long-term quantum computational advantage, the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares. Here, we demonstrate a superconducting quantum computing systems textit{Zuchongzhi} 2.1, which has 66 qubits in a two-dimensional array in a tunable coupler architecture. The readout fidelity of textit{Zuchongzhi} 2.1 is considerably improved to an average of 97.74%. The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling, with a system scale of up to 60 qubits and 24 cycles. The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore [Nature textbf{574}, 505 (2019)] in the classic simulation, and 3 orders of magnitude more difficult than the sampling task on textit{Zuchongzhi} 2.0 [arXiv:2106.14734 (2021)]. The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years (about $4.8times 10^4$ years), while textit{Zuchongzhi} 2.1 only takes about 4.2 hours, thereby significantly enhancing the quantum computational advantage.
Gaussian boson sampling exploits squeezed states to provide a highly efficient way to demonstrate quantum computational advantage. We perform experiments with 50 input single-mode squeezed states with high indistinguishability and squeezing parameter
Motivated by the recent experimental demonstrations of quantum supremacy, proving the hardness of the output of random quantum circuits is an imperative near term goal. We prove under the complexity theoretical assumption of the non-collapse of the p
One-parameter interpolations between any two unitary matrices (e.g., quantum gates) $U_1$ and $U_2$ along efficient paths contained in the unitary group are constructed. Motivated by applications, we propose the continuous unitary path $U(theta)$ obt
Photonics is a promising platform for demonstrating quantum computational supremacy (QCS) by convincingly outperforming the most powerful classical supercomputers on a well-defined computational task. Despite this promise, existing photonics proposal
Scaling up to a large number of qubits with high-precision control is essential in the demonstrations of quantum computational advantage to exponentially outpace the classical hardware and algorithmic improvements. Here, we develop a two-dimensional